Skip to main content
Log in

ASSOCIATIVE, LIE, AND LEFT-SYMMETRIC ALGEBRAS OF DERIVATIONS

  • Published:
Transformation Groups Aims and scope Submit manuscript

Abstract

Let P n = k[x 1 , x 2 ,…,x n ] be the polynomial algebra over a field k of characteristic zero in the variables x 1 , x 2 ,…,x n and n be the left-symmetric Witt algebra of all derivations of P n [Bu]. Using the language of n , for every derivation D ∈ ℒ n we define the associative algebra AssD, the Lie algebra LieD, and the left-symmetric algebra D related to the study of the Jacobian Conjecture. For every derivation D ∈ ℒ n there is a unique n-tuple F = (f 1 , f 2 ,…,f n ) of elements of P n such that D = D F = f 1 1 + f 2 2 +⋯ + f n n . In this case, using an action of the Hopf algebra of noncommutative symmetric functions NSymm on P n , we show that these algebras are closely related to the description of coefficients of the formal inverse to the polynomial endomorphism X + tF, where X = (x 1 , x 2 ,…,x n ) and t is an independent parameter. We prove that the Jacobian matrix J(F) is nilpotent if and only if all right powers D [r] F of D F in n have zero divergence. In particular, if J(F) is nilpotent then DF is right nilpotent. We give one formula for the coefficients of the formal inverse to X + tF as a left-symmetric polynomial in one variable and formulate some open questions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Bass, E. H. Connell, D. Wright, The Jacobian conjecture: reduction of degree and formal expansion of the inverse, Bull. Amer. Math. Soc. (N.S.) 7 (1982), no. 2, 287-330.

  2. H. Bass, A non-triangular action of G a on \( \mathbb{A} \) 3, J. of Pure and Appl. Algebra 33 (1984), no. 1, 1-5.

    Article  MathSciNet  MATH  Google Scholar 

  3. D. Burde, Left-symmetric algebras, or pre-Lie algebras in geometry and physics, Cent. Eur. J. Math. 4 (2006), no. 3, 323-357.

    Article  MathSciNet  MATH  Google Scholar 

  4. A. Dzhumadil’daev, Minimal identities for right-symmetric algebras, J. Algebra 225 (2000), no. 1, 201-230.

    Article  MathSciNet  MATH  Google Scholar 

  5. A. van den Essen, Seven lectures on polynomial automorphisms, in: Automor-phisms of Affine Spaces (Curaçao, 1994), Kluwer Acad. Publ., Dordrecht, 1995, pp. 3-39.

  6. A. van den Essen, Polynomial Automorphisms and the Jacobian Conjecture, Progress in Mathematics, Vol. 190, Birkhäuser, Basel, 2000.

  7. I. M. Gelfand, D. Krob, A. Lascoux, B. Leclerc, V. S. Retakh, J.-Y. Thibon, Noncommutative symmetric functions, Adv. Math. 112 (1995), no. 2, 218-348.

    Article  MathSciNet  MATH  Google Scholar 

  8. I. Gessel, Multipartite P-partitions and inner products of skew Schur functions, Contemp. Math. 34 (1984), 289-301.

    Article  MathSciNet  MATH  Google Scholar 

  9. G. Gorni, G. Zampieri, Yagzhev polynomial mappings: on the structure of the Taylor expansion of their local inverse, Ann. Polon. Math. 64 (1996), no. 3, 285-290.

    MathSciNet  MATH  Google Scholar 

  10. M. Hazewinkel, Symmetric functions, noncommutative symmetric functions and quasisymmetric functions II, Acta Appl. Math. 85 (2005), no. 1-3, 319-340.

    Article  MathSciNet  MATH  Google Scholar 

  11. B. A. Kupershmidt, Non-abelian phase spaces, J. Phys. A 27 (1994), no. 8, 2801-2809.

    Article  MathSciNet  MATH  Google Scholar 

  12. L. Makar-Limanov, U. Umirbaev, The Freiheitssatz for Novikov algebras, TWMS J. Pure Appl. Math. 2 (2011), no. 2, 66-73.

    MathSciNet  MATH  Google Scholar 

  13. C. Malvenuto, C. Reutenauer, Duality between quasi-symmetric functions and the Solomon descent algebra, J. Algebra 177 (1995), no. 3, 967-982.

    Article  MathSciNet  MATH  Google Scholar 

  14. Ю. П. Размыслов, Тождества со следом полных матричных алгебр над полем характеристики нуль, Изв. AH CCCP, сер. матем. 38 (1974), вып. 4, 723-756. Engl. transl.: Yu. P. Razmyslov, Trace identities of full matrix algebras over a field of characteristic zero, Math. USSR-Izv. 8 (1974), no. 4, 727-760.

  15. Ю. П. Размыслов, Тождества алгебр и их представлений, Наука, M., 1989. Engl. transl.: Yu. P. Razmyslov, Identities of Algebras and Their Representations, Translations of Mathematical Monographs, Vol. 138, Amer. Math. Soc., Providence, RI, 1994.

  16. L. Solomon, A Mackey formula in the group ring of a Coxeter group, J. Algebra 41 (1976), no. 2, 255-264.

    Article  MathSciNet  MATH  Google Scholar 

  17. D. Wright, The Jacobian conjecture as a problem in combinatorics, in: Affine Algebraic Geometry, Osaka Univ. Press, Osaka, 2007, pp. 483-503.

    MATH  Google Scholar 

  18. D. Wright, W. Zhao, D-log and formal ow for analytic isomorphisms of n-space, Trans. Amer. Math. Soc. 355 (2003), no. 8, 3117-3141.

    Article  MathSciNet  MATH  Google Scholar 

  19. W. Zhao, Noncommutative symmetric functions and the inversion problem, Internat. J. Algebra Comput. 18 (2008), no. 5, 869-899.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U. U. UMIRBAEV.

Additional information

(U. U. UMIRBAEV) Supported by an MES grant 0755/GF of Kazakhstan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

UMIRBAEV, U.U. ASSOCIATIVE, LIE, AND LEFT-SYMMETRIC ALGEBRAS OF DERIVATIONS. Transformation Groups 21, 851–869 (2016). https://doi.org/10.1007/s00031-016-9368-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00031-016-9368-7

Keywords

Navigation