Skip to main content
Log in

AUTOMORPHISM GROUP OF A BOTT–SAMELSON–DEMAZURE–HANSEN VARIETY

  • Published:
Transformation Groups Aims and scope Submit manuscript

Abstract

Let G be a simple algebraic group of adjoint type over the field of complex numbers, B be a Borel subgroup of G containing a maximal torus T of G, w be an element of the Weyl group W and X(w) be the Schubert variety in G/B corresponding to w. Let Z(w; i) be the Bott-Samelson-Demazure-Hansen variety corresponding to a reduced expression i of w. In this article, we compute inductively, the connected component Aut0(Z(w; i)) of the automorphism group of Z(w; i) containing the identity automorphism. We show that Aut0(Z(w; i)) contains a closed subgroup isomorphic to B if and only if w -10) < 0, where α0 is the highest root. If w 0 denotes the longest element of W, then we prove that Aut0(Z(w 0; i)) is a parabolic subgroup of G. It is also shown that this parabolic subgroup depends very much on the chosen reduced expression i of w 0 and we describe all parabolic subgroups of G that occur as Aut0(Z(w 0; i)). If G is simply laced, then we show that for every w ϵ W, and for every reduced expression i of w, Aut0(Z(w; i)) is a quotient of the parabolic subgroup Aut0(Z(w 0; j)) of G for a suitable choice of a reduced expression j of w 0 (see Theorem 7.3).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. Balaji, S. S. Kannan, K. V. Subrahmanyam, Cohomology of line bundles on Schubert varieties I, Transform. Groups 9 (2004), no. 2, 105-131.

    Article  MathSciNet  MATH  Google Scholar 

  2. R. Bott, Homogeneous vector bundles, Annals of Math., Ser. (2) 66 (1957), 203-248.

    Article  MathSciNet  MATH  Google Scholar 

  3. R. Bott, H. Samelson, Applications of the theory of Morse to symmetric spaces, Amer. J. Math. 80 (1958), 964-1029.

    Article  MathSciNet  Google Scholar 

  4. M. Brion, S. Kumar, Frobenius Splitting Methods in Geometry and Representation Theory, Progress in Mathematics, Vol. 231, Birkhäuser Boston, Boston, MA, 2005.

    Google Scholar 

  5. R. Dabrowski, A simple proof of a necessary and sufficient condition for the existence of nontrivial global sections of a line bundle on a Schubert variety, in: Kazhdan-Lusztig Theory and Related Topics (Chicago, IL, 1989), Contemp. Math., Vol. 139, Amer. Math. Soc., Providence, RI, 1992, pp. 113-120.

  6. M. Demazure, Désingularisation des variétés de Schubert généralisées, Ann. Sci. École Norm. Sup (4) 7 (1974), 53-88.

    MathSciNet  MATH  Google Scholar 

  7. M. Demazure, A very simple proof of Bott's theorem, Invent. Math. 33 (1976), no. 3, 271-272.

    Article  MathSciNet  MATH  Google Scholar 

  8. H. C. Hansen, On cycles on ag manifolds, Math. Scand. 33 (1973), 269-274.

    MathSciNet  Google Scholar 

  9. R. Hartshorne, Algebraic Geometry, Graduate Texts in Mathematics, Vol. 52, Springer-Verlag, Berlin, 1977. Russian transl.: Р. Хартcxорн, Алгебраическая геометрия,Mиp, M., 1981.

  10. J. E. Humphreys, Introduction to Lie Algebras and Representation Theory, Graduate Texts in Mathematics, Vol. 9, Springer-Verlag, New York, 1972.

    Book  Google Scholar 

  11. J. E. Humphreys, Linear Algebraic Groups, Graduate Texts in Mathematics, Vol. 21, Springer-Verlag, New York, 1975. Russian transl.: Дж. Хамфри, Линейные алгебраические группы Hayκa, M., 1980.

  12. D. Huybrechts, Complex Geometry: An Introduction, Universitext, Springer-Verlag, Berlin, 2005.

  13. J. C. Jantzen, Representations of Algebraic Groups, 2nd ed., Mathematical Surveys and Monographs, Vol. 107, American Mathematical Society, Providence, RI, 2003.

  14. S. S. Kannan, S. K. Pattanayak, Torus quotients of homogeneous spaces|minimal- dimentional Schubert varieties admitting semi-stable points, Proc. Indian Acad.Sci. (Math.Sci), 119 (2009), no. 4, 469-485.

  15. S. S. Kannan, On the automorphism group of a smooth Schubert variety, arxiv.org/ abs/1312.7066.

  16. H. Matsumura, F. Oort, Representability of group functors, and automorphisms of algebraic schemes, Invent. Math. 4 (1967), 1-25.

    Article  MathSciNet  MATH  Google Scholar 

  17. D. Mumford, J. Fogarty, F. Kirwan, Geometric Invariant Theory, 3rd ed., Ergebnisse der Mathematik und ihrer Grenzgebiete (2), Bd. 34, Springer-Verlag, Berlin, 1994.

  18. P. Polo, Variétés de Schubert et excellentes filtrations, Astérisque 173{174 (1989), no. 10-11, 281-311.

  19. C. Weibel, An Introduction to Homological Algebra, Cambridge University Press, Cambridge, 1994.

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. SENTHAMARAI KANNAN.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

CHARY, B.N., KANNAN, S.S. & PARAMESWARAN, A.J. AUTOMORPHISM GROUP OF A BOTT–SAMELSON–DEMAZURE–HANSEN VARIETY. Transformation Groups 20, 665–698 (2015). https://doi.org/10.1007/s00031-015-9327-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00031-015-9327-8

Keywords

Navigation