Skip to main content
Log in

Commuting involutions and degenerations of isotropy representations

  • Published:
Transformation Groups Aims and scope Submit manuscript

Let σ 1 and σ 2 be commuting involutions of a semisimple algebraic group G. This yields a \( {{\mathbb{Z}}_2}\times {{\mathbb{Z}}_2} \)-grading of \( \mathfrak{g} \) = Lie(G), \( \mathfrak{g}={\oplus_{i,j=0,1 }}{{\mathfrak{g}}_{ij }} \), and we study invariant-theoretic aspects of this decomposition. Let \( \mathfrak{g}\left\langle {{\sigma_1}} \right\rangle \) be the \( {{\mathbb{Z}}_2} \)-contraction of \( \mathfrak{g} \) determined by σ 1. Then both σ 2 and σ 3 := σ 1 σ 2 remain involutions of the non-reductive Lie algebra \( \mathfrak{g}\left\langle {{\sigma_1}} \right\rangle \). The isotropy representations related to \( \left( {\mathfrak{g}\left\langle {{\sigma_1}} \right\rangle, {\sigma_2}} \right) \) and \( \left( {\mathfrak{g}\left\langle {{\sigma_1}} \right\rangle, {\sigma_3}} \right) \) are degenerations of the isotropy representations related to \( \left( {\mathfrak{g},{\sigma_2}} \right) \) and \( \left( {\mathfrak{g},{\sigma_3}} \right) \), respectively. These degenerated isotropy representations retain many good properties. For instance, they always have a generic stabiliser and their algebras of invariants are often polynomial. We also develop some theory on Cartan subspaces for various \( {{\mathbb{Z}}_2} \)-gradings associated with the \( {{\mathbb{Z}}_2}\times {{\mathbb{Z}}_2} \)-grading of \( \mathfrak{g} \) and study the special case in which σ 1 and σ 2 are conjugate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Л. B. Антонян, O классификацию однородных элементы \( {{\mathbb{Z}}_2} \) -градуированных полупростых алгебр Ли, Вестник Моск. Ун-та, Cер. 1 Матем Мех. (1982), no. 2, 29–34. Engl. transl.: L. V. Antonyan, On the classification of homogeneous elements of \( {{\mathbb{Z}}_2} \)-graded semisimple Lie algebras, Moscow Univ. Math. Bull. 37 (1982), no. 2, 36–43.

    Google Scholar 

  2. A. Bialynicki-Birula, On homogeneous affine spaces of linear algebraic groups, Amer. J. Math. 85 (1963), 577–582.

    Article  MathSciNet  MATH  Google Scholar 

  3. M. Bulois, Sheets of symmetric Lie algebras and Slodowy slices, J. Lie Theory 21 (2011), 1–54.

    MathSciNet  MATH  Google Scholar 

  4. M. Duo, Opérateurs différentiels invariants sur un espace symétrique, C. R. Acad. Sci., Paris, Sér. A−B 289 (1979), no. 2, A135−A137.

    Google Scholar 

  5. F. Gonzalez, S. Helgason, Invariant differential operators on Grassmann manifolds, Adv. Math. 60 (1986), 81–91.

    Article  MathSciNet  MATH  Google Scholar 

  6. S. Helgason, Differential Geometry, Lie Groups, and Symmetric Spaces, Academic Press, New York, 1978.

    MATH  Google Scholar 

  7. A. Helminck, G. Schwarz, Orbits and invariants associated with a pair of commuting involutions, Duke Math. J. 106 (2001), 237–279.

    Article  MathSciNet  MATH  Google Scholar 

  8. A. Helminck, G. Schwarz, Smoothness of quotients associated with a pair of commuting involutions, Canad. J. Math. 56 (2004), 945–962.

    Article  MathSciNet  MATH  Google Scholar 

  9. A. Kollross, Exceptional \( {{\mathbb{Z}}_2}\times {{\mathbb{Z}}_2} \)-symmetric spaces, Pacific J. Math. 242 (2009), no. 1, 113–130.

    Article  MathSciNet  MATH  Google Scholar 

  10. B. Kostant, Lie group representations on polynomial rings, Amer. J. Math. 85 (1963), 327–404.

    Article  MathSciNet  MATH  Google Scholar 

  11. B. Kostant, S. Rallis, Orbits and representations associated with symmetric spaces, Amer. J. Math. 93 (1971), 753–809.

    Article  MathSciNet  MATH  Google Scholar 

  12. D. Luna, Sur les orbites fermées des groupes algébriques réductifs, Invent. Math. 16 (1972), 1–5.

    Article  MathSciNet  MATH  Google Scholar 

  13. T. Matsuki, Double coset decompositions of reductive Lie groups arising from two involutions, J. Algebra 197 (1997), 49–91.

    Article  MathSciNet  MATH  Google Scholar 

  14. A. L. Onishchik, E. B. Vinberg, Lie Groups and Algebraic Groups, Springer-Verlag, Berlin, 1990.

    Book  MATH  Google Scholar 

  15. D. I. Panyushev, On spherical nilpotent orbits and beyond, Ann. Inst. Fourier 49 (1999), 1453–1476.

    Article  MathSciNet  MATH  Google Scholar 

  16. D. I. Panyushev, On invariant theory of θ-groups, J. Algebra 283 (2005), 655–670.

    Article  MathSciNet  MATH  Google Scholar 

  17. D. I. Panyushev, Semi-direct products of Lie algebras and their invariants, Publ. R.I.M.S. 43 (2007), no. 4, 1199–1257.

    Article  MathSciNet  MATH  Google Scholar 

  18. D. I. Panyushev, On the coadjoint representation of \( {{\mathbb{Z}}_2} \)-contractions of reductive Lie algebras, Adv. Math. 213 (2007), 380–404.

    Article  MathSciNet  MATH  Google Scholar 

  19. Э. Б. Винберг, В. Л. Попов, Теория инвариантов, Итоги науки и техн., Соврем. пробл. матем., Фундам. направл., т. 55, Алгебраическaя геометрия−4, ВИНИТИ, М., 1989, cтр. 137–314. Engl. transl.: V. L. Popov, E. B. Vinberg, Invariant Theory, in: Algebraic Geometry, IV, Encyclopaedia of Mathematical Sciences, Vol. 55, Springer-Verlag, Berlin, 1994, pp. 123–284.

  20. R. W. Richardson, Orbits, invariants, and representations associated to involutions of reductive groups, Invent. Math. 66 (1982), no. 2, 287–312.

    Article  MathSciNet  MATH  Google Scholar 

  21. R. W. Richardson, Normality of G-stable subvarieties of a semisimple Lie algebra, in: Algebraic Groups’, Lecture Notes Mathematics, Vol. 1271, Springer, Berlin, 1987, pp. 243–264.

    Google Scholar 

  22. R. W. Richardson, Derivatives of invariant polynomials on a semisimple Lie algebra, in: Miniconference on Harmonic Analysis and Operator Algebras (Canberra, 1987), Proc. Centre Math. Anal. Austral. Nat. Univ., Vol. 15, Austral. Nat. Univ., Canberra, 1987, pp. 228–241.

    Google Scholar 

  23. M. Rosenlicht, On quotient varieties and the affine embedding of certain homogeneous spaces, Trans. Amer. Math. Soc. 101 (1961), 211–223.

    Article  MathSciNet  MATH  Google Scholar 

  24. G. Schwarz, C. Zhu, Invariant differential operators on symplectic Grassmann manifolds, Manuscr. Math. 82 (1994), no. 2, 191–206.

    Article  MathSciNet  MATH  Google Scholar 

  25. W. Smoke, Commutativity of the invariant differential operators on a symmetric space, Proc. Amer. Math. Soc. 19 (1968), 222–224.

    Article  MathSciNet  MATH  Google Scholar 

  26. T. A. Springer, Regular elements of finite reection groups, Invent. Math. 25 (1974), 159–198.

    Article  MathSciNet  MATH  Google Scholar 

  27. M. Vergne, Instantons et correspondance de Kostant−Sekiguchi, C. R. Acad. Sci., Paris, Sér. I 320 (1995), no. 8, 901–906.

    MathSciNet  MATH  Google Scholar 

  28. E. B. Vinberg, Short SO3-structures on simple Lie algebras and associated quasiel-liptic planes, in: E. Vinberg ed., Lie Groups and Invariant Theory, American Mathematical Society Translations, Series 2, Vol. 213, 2005, American Mathematical Society, Providence, RI, pp. 243–270.

    Google Scholar 

  29. O. S. Yakimova, One-parameter contractions of Lie-Poisson brackets, J. Europ. Math. Soc. (2013), to appear, arXiv:1202.3009.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitri I. Panyushev.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Panyushev, D.I. Commuting involutions and degenerations of isotropy representations. Transformation Groups 18, 507–537 (2013). https://doi.org/10.1007/s00031-013-9224-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00031-013-9224-y

Keywords

Navigation