Skip to main content
Log in

Second countable virtually free pro-p groups whose torsion elements have finite centralizer

  • Published:
Selecta Mathematica Aims and scope Submit manuscript

Abstract

A second countable virtually free pro-\(p\) group all of whose torsion elements have finite centralizer is the free pro-\(p\) product of finite p-groups and a free pro-\(p\) factor. The proof explores a connection between p-adic representations of finite p-groups and virtually free pro-p groups. In order to utilize this connection, we first prove a version of a remarkable theorem of A. Weiss for infinitely generated profinite modules that allows us to detect freeness of profinite modules. The proof now proceeds using techniques developed in the combinatorial theory of profinite groups. Using an HNN-extension, we embed our group into a semidirect product \(F\rtimes K\) of a free pro-p group F and a finite p-group K that preserves the conditions on centralizers and such that every torsion element is conjugate to an element of K. We then show that the \(\mathbb {Z}_pK\)-module F / [FF] is free using the detection theorem mentioned above. This allows us to deduce the result for \(F\rtimes K\), and hence for our original group, using the pro-p version of the Kurosh subgroup theorem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Efrat, I.: Valuations. Orderings, and Milnor K-Theory, Mathematical Surveys and Monographs, vol. 124. American Mathematical Society, Providence, RI (2006)

  2. Efrat, I.: On virtually projective groups. Michigan Math. J. 42(3), 435–447 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  3. Haran, D.: On the cohomological dimension of Artin–Schreier structures. J. Algebra. 156, 219–236 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  4. Herfort, W.N., Zalesskii, P.A.: Virtually free pro-\(p\) groups whose torsion elements have finite centralizers. Bull. Lond. Math. Soc. 40, 929–936 (2008)

  5. Herfort, W.N., Zalesskii, P.A.: Profinite HNN-constructions. J. Group Theory 10(6), 799–809 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  6. Herfort, W.N., Zalesskii, P.A.: Cyclic extensions of free pro-\(p\) groups. J. Algebra 216(2), 511–547 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  7. Melnikov, O.V.: Subgroups and homology of free products of profinite groups. Math. USSR Izvest. 34(1), 97–119 (1990)

    Article  MathSciNet  Google Scholar 

  8. Ribes, L., Zalesskii, P.A.: Profinite Groups. Springer, Berlin (2010)

    Book  MATH  Google Scholar 

  9. Ribes, L., Zalesskii, P.A.: Pro-\(p\) trees. In: du Sautoy M., Segal D., Shalev A. (eds.) New Horizons in Pro-\(p\) Groups, Progress in Mathematics 184. Birkhäuser, Boston (2010)

  10. Symonds, P.A.: Permutation complexes for profinite groups. Commentar. Mathe. Helv. 82, 1–37 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  11. Symonds, P.A.: Structure theorems over polynomial rings. Adv. Math. 208, 408–421 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  12. Weiss, A.: Rigidity of \(p\)-adic \(p\)-torsion. Ann. Math. 27(2), 317–332 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  13. Wilson, J.S.: Profinite Groups. Oxford Science Publications, Oxford (1998)

    MATH  Google Scholar 

  14. Zalesskii, P.A.: On virtually projective groups. J. für die Reine und Angewandte Mathematik 572, 97–110 (2004)

    MathSciNet  MATH  Google Scholar 

  15. Zalesskii, P.A., Melnikov, O.V.: Fundamental Groups of Graphs of Profinite Groups, Algebra i Analiz 1 (1989); translated in: Leningrad Math. J. 1, 921–940 (1990)

Download references

Acknowledgments

We express a big thank you to Peter Symonds, whose input has been of great help to this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. W. MacQuarrie.

Additional information

Research partially supported by the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

MacQuarrie, J.W., Zalesskii, P.A. Second countable virtually free pro-p groups whose torsion elements have finite centralizer. Sel. Math. New Ser. 23, 101–115 (2017). https://doi.org/10.1007/s00029-016-0230-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00029-016-0230-5

Keywords

Mathematics Subject Classification

Navigation