Skip to main content
Log in

Fourier transform of the additive group in algebraically closed valued fields

  • Published:
Selecta Mathematica Aims and scope Submit manuscript

Abstract

We continue the study of the Hrushovski–Kazhdan integration theory and consider exponential integrals. The Grothendieck ring is enlarged via a tautological additive character and hence can receive such integrals. We then define the Fourier transform in our integration theory and establish some fundamental properties of it. Thereafter, a basic theory of distributions is also developed. We construct the Weil representations in the end as an application. The results are completely parallel to the classical ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bernstein, J.: Analytic continuation of distributions with respect to a parameter. Funct. Anal. Appl. 6(4), 26–40 (1972)

    Google Scholar 

  2. Cartier, P.: Über einige integralformeln in der theorie der quadratischen formen. Math. Z. 84(2), 93–100 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  3. Cluckers, R., Hales, T., Loeser, F.: Transfer principle for the fundamental lemma. In: Clozel, L., Harris, M., Labesse, J.-P., Ngô, B.-C. (eds.) On the Stabilization of the Trace Formula. International Press of Boston, Boston (2011) arXiv:0712.0708v1

  4. Cluckers, R., Loeser, F.: Constructible motivic functions and motivic integration. Invent. Math. 173(1), 23–121 (2008). math.AG/0410203

    Google Scholar 

  5. Cluckers, R., Loeser, F.: Constructible exponential functions, motivic Fourier transform and transfer principle. Ann. Math. 171(2), 1011–1065 (2010). math.AG/0512022

    Google Scholar 

  6. Cunningham, C., Hales, T.: Good orbital integrals. Represent. Theory 8, 414–457 (2004). arXiv:math/0311353v2

    Article  MathSciNet  MATH  Google Scholar 

  7. Gel’fand, I.M., Shilov, G.E.: Generalized Functions: Properties and Operations, vol. 1. Academic Press, New York (1964) translated from the Russian by Eugene Saletan

  8. Gordon, J., Yaffe, Y.: An overview of arithmetic motivic integration. In: Ottawa lectures on admissible representations of reductive p-adic groups. Fields Institute Monograph, vol. 26, Am. Math. Soc., Providence, RI (2009) arXiv:0811.2160v1

  9. Haines, T.J., Kottwitz, R.E., Prasad, A.: Iwahori–Hecke algebras. J. Ramanujan Math. Soc. 25(2), 113–145 (2010). arXiv:math/0309168v3

    MathSciNet  MATH  Google Scholar 

  10. Hales, T.: What is motivic measure? Bull. Am. Math. Soc. 42(2), 119–135 (2005). math.AG/0312229

    Google Scholar 

  11. Hörmander, L.: The Analysis of Linear Partial Differential Operators I: Distribution Theory and Fourier Analysis, Grundlehren der mathematischen Wissenschaften 256. Springer, New York (1983)

    Google Scholar 

  12. Hrushovski, E., Kazhdan, D.: Integration in valued fields, Algebraic geometry and number theory. Progr. Math., vol. 253, pp. 261–405. Birkhäuser, Boston, MA (2006). math.AG/0510133

  13. Hrushovski, E., Kazhdan, D.: The value ring of geometric motivic integration and the Iwahori Hecke algebra of \(\text{ SL }_2\). Geom. Funct. Anal. GAFA 17(6), 1924–1967 (2008) with an appendix by Nir Avni, math.AG/0609115

  14. Hrushovski, E., Kazhdan, D.: Motivic Poisson summation. Mosc. Math. J. 9(3), 569–623 (2009). arXiv:0902.0845v1

  15. Looijenga, E.: Motivic measures, Séminaire Bourbaki, Volume 1999/2000, Exposés 865–879, Paris: Société Mathématique de France, Astérisque 276, 267–297, Exp. No. 874 (2002). arXiv:math/0006220v2

  16. Ranga Rao, R.: On some explicit formulas in the theory of Weil representation. Pac. J. Math. 157, 335–372 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  17. Weil, A.: Sur certains groupes d’opérateurs unitaires. Acta Math. 111(1), 143–211 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  18. Yin, Y.: Basic Number Theory, 3rd edn. Springer, New York (1974)

    Google Scholar 

  19. Yin, Y.: Quantifier elimination and minimality conditions in algebraically closed valued fields (2009). arXiv:1006.1393v1

  20. Yin, Y.: Special transformations in algebraically closed valued fields. Ann. Pure Appl. Log. 161(12), 1541–1564 (2010). arXiv:1006.2467

  21. Yin, Y.: Integration in algebraically closed valued fields. Ann. Pure Appl. Log. 162(5), 384–408 (2011). arXiv:0809.0473v2

    Google Scholar 

  22. Yin, Y.: Additive invariants in o-minimal valued fields (2013). arXiv:1307.0224, submitted

  23. Yin, Y.: Integration in algebraically closed valued fields with sections. Ann. Pure Appl. Log. 164(1), 1–29 (2013) arXiv:1204.5979v2

    Google Scholar 

Download references

Acknowledgments

I would like to thank Thomas Hales for many hours of stimulating discussions during the preparation of this paper, in particular, for pointing out to me the possibility of constructing a motivic version of the Weil representations. The research reported in this paper has been partially supported by the ERC Advanced Grant NMNAG.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yimu Yin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yin, Y. Fourier transform of the additive group in algebraically closed valued fields. Sel. Math. New Ser. 20, 1111–1157 (2014). https://doi.org/10.1007/s00029-014-0153-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00029-014-0153-y

Keywords

Mathematics Subject Classification (1991)

Navigation