Skip to main content
Log in

Principal Eigenvalue of p-Laplacian Operator in Exterior Domain

  • Published:
Results in Mathematics Aims and scope Submit manuscript

Abstract

We consider an eigenvalue problem of the form

$$\left.\begin{array}{cl}-\Delta_{p} u = \lambda\, K(x)|u|^{p-2}u \quad \mbox{in}\quad \Omega^e\\ u(x) =0 \quad \mbox{for}\quad \partial \Omega\\ u(x) \to 0 \quad \mbox{as}\quad |x| \to \infty,\end{array} \right \}$$

where \({\Omega \subset \mathrm{I\!R\!}^N}\) is a simply connected bounded domain, containing the origin, with C 2 boundary \({\partial \Omega}\) and \({\Omega^e:=\mathrm{I\!R\!^N} \setminus \overline{\Omega}}\) is the exterior domain, \({1 < p < N, \Delta_{p}u:={\rm div}(|\nabla u|^{p-2} \nabla u)}\) is the p-Laplacian operator and \({K \in L^{\infty}(\Omega^e) \cap L^{N/p}(\Omega^e)}\) is a positive function. Existence and properties of principal eigenvalue λ 1 and its corresponding eigenfunction are established which are generally known in bounded domain or in \({\mathrm{I\!R\!}^N}\). We also establish the decay rate of positive eigenfunction as \({|x| \to \infty}\) as well as near ∂Ω.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Allegretto W.: Principal eigenvalues for indefinite-weight elliptic problems in \({\mathrm{I\!R\!}^N}\). Proc. Am. Math. Soc. 116(3), 701–706 (1992)

    MathSciNet  MATH  Google Scholar 

  2. Anane A.: Simplicité et isolation de la preimiére valeur propre du p-Laplacien avec poids. C.R. Acad. Sci. Paris Sér. I. Math. 305(16), 725–728 (1987)

    MathSciNet  MATH  Google Scholar 

  3. Ávila A.I., Brock F.: Asymptotics at infinity of solutions for p-Laplace equations in exterior domains. Nonlinear Anal. 69(5–6), 1615–1628 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. Allegretto W., Huang Y.X.: Eigenvalues of the indefinite-weight p-Laplacian in weighted spaces. Funkc. Ekvac. 38(2), 233–242 (1995)

    MathSciNet  MATH  Google Scholar 

  5. DiBenedetto E.: C 1+α local regularity of weak solutions of degenerate elliptic equations. Nonlinear Anal. 7(8), 827–850 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  6. Belloni M., Kawohl B.: A direct uniqueness proof for equations involving the p-Laplace operator. Manuscripta Mat. 109(2), 229–231 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cuesta M.: Eigenvalue problems for the p-Laplacian with indefinite weights. Electron. J. Differ. Equs. 33, 1–9 (2001)

    Google Scholar 

  8. Drábek, P., Kufner, A., Nicolosi, F.: Quasilinear elliptic equations with degenerations and singularities. De Gruyter Series in Nonlinear Analysis and Applications, 5. Walter de Gruyter & Co., Berlin (1997)

  9. Drábek P., Milota M.: Methods of Nonlinear Analysis: Applications to Differential Equations, 2nd edn. Birkhäuser, Basel (2013)

    Book  Google Scholar 

  10. Drábek P., Kuliev K.: Half-linear Sturm-Liouville problem with weights. Bull. Belg. Math. Soc. Simon Stevin 19(1), 107–119 (2012)

    MathSciNet  MATH  Google Scholar 

  11. Fleckinger-Pellé J., Gossez J.-P., de Thélin F.: Principal eigenvalue in an unbounded domain and a weighted poincaré inequality. Prog. Nonlinear. Differ. Equs. Their Appl. 66, 283–296 (2006)

    Google Scholar 

  12. Gilbarg D., Trudinger N.S.: Elliptic partial differential equations of second order. Springer, Berlin (1998)

    Google Scholar 

  13. Lieberman G.: Boundary regularity for solutions of degenerate elliptic equations. Nonlinear Anal. 12(11), 1203–1219 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  14. Lindqvist P.: On the equation \({{\rm div}(|\nabla u|^{p-2}\nabla u) + \lambda|u|^{p-2}u=0}\). Proc. AMS 109(1), 157–164 (1990)

    MathSciNet  MATH  Google Scholar 

  15. Serrin J.: Local behavior of solutions of quasilinear equations. Acta Math. 111, 247–302 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  16. Tolksdorf P.: Regularity for a more general class of quasilinear elliptic equations. J. Differ. Equs. 51(1), 126–150 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  17. Vázquez J.L.: A strong maximum principle for quasilinear elliptic equations. Appl. Math. Optim. 12(3), 191–202 (1984)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maya Chhetri.

Additional information

The second author was supported by the Grant Agency of Czech Republic, Project No. 13-00863S.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chhetri, M., Drábek, P. Principal Eigenvalue of p-Laplacian Operator in Exterior Domain. Results. Math. 66, 461–468 (2014). https://doi.org/10.1007/s00025-014-0386-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00025-014-0386-2

Mathematics Subject Classification (2010)

Keywords

Navigation