Skip to main content
Log in

Abelian Extensions and Solvable Loops

  • Published:
Results in Mathematics Aims and scope Submit manuscript

Abstract

Based on the recent development of commutator theory for loops, we provide both syntactic and semantic characterization of abelian normal subloops. We highlight the analogies between well known central extensions and central nilpotence on one hand, and abelian extensions and congruence solvability on the other hand. In particular, we show that a loop is congruence solvable (that is, an iterated abelian extension of commutative groups) if and only if it is not Boolean complete, reaffirming the connection between computational complexity and solvability. Finally, we briefly discuss relations between nilpotence and solvability for loops and the associated multiplication groups and inner mapping groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aichinger E., Mudrinski N.: Some applications of higher commutators in Mal’cev algebras. Algebra Univ. 63(4), 367–403 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bergman C.: Universal algebra: fundamentals and selected topics. Chapman & Hall/CRC Press, London (2011)

    Google Scholar 

  3. Bruck R.H.: Contributions to the theory of loops. Trans. Am. Math. Soc. 60, 245–354 (1946)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bruck R.H.: A survey of binary systems. Ergebnisse der Mathematik und ihrer Grenzgebiete. Springer, Berlin (1958)

    Google Scholar 

  5. Bruck R.H., Paige L.J.: Loops whose inner mappings are automorphisms. Ann. Math. 2(63), 308–323 (1956)

    Article  MathSciNet  Google Scholar 

  6. Bulatov A.: On the number of finite Mal’tsev algebras. Contrib. Gen. Algebra 13, 41–54 (2001)

    MathSciNet  Google Scholar 

  7. Csörgő P.: Abelian inner mappings and nilpotency class greater than two. Eur. J. Combin. 28(3), 858–867 (2007)

    Article  Google Scholar 

  8. Drápal A., Vojtěchovský P.: Small loops of nilpotency class three with commutative inner mapping groups. J. Group Theory 14(4), 547–573 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. Freese R., McKenzie R.: Commutator theory for congruence modular varieties. London Mathematical Society Lecture Note Series 125. Cambridge University Press, Cambridge (1987)

    Google Scholar 

  10. The GAP Group: GAP—groups, algorithms, and programming, Version 4.5.5. http://www.gap-system.org (2012). Accessed 12 Feb 2014

  11. Kinyon, M., Kunen, K., Phillips, J.D., Vojtěchovský, P.: The structure of automorphic loops. Trans. Am. Math. Soc. (2014, to appear)

  12. Kinyon, M., Veroff, R., Vojtěchovský, P.: Loops with abelian inner mapping groups: an application of automated deduction. In: Bonacina, M.P., Stickel, M.E. (eds.) Automated Reasoning and Mathematics, Essays in Memory of William McCune. Lecture Notes in Artificial Intelligence, vol. 7788, pp. 151–164. Springer, New York (2013)

  13. Lemieux F., Moore C., Thérien D.: Polyabelian loops and Boolean completeness. Comment. Math. Univ. Carol. 41(4), 671–686 (2000)

    MATH  Google Scholar 

  14. Maurer W.D., Rhodes J.: A property of finite simple non-abelian groups. Proc. Am. Math. Soc. 16, 552–554 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  15. Mazur M.: Connected transversals to nilpotent groups. J. Group Theory 10(2), 195–203 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  16. Moore, C., Thérien, D., Lemieux, F., Berman, J., Drisko, A.: Circuits and expressions with nonassociative gates. In: 12th Annual IEEE Conference on Computational Complexity (Ulm, 1997) (published in J. Comput. Syst. Sci. 60(2), part 2, 368–394) (2000)

  17. McKenzie, R., Snow, J.: Congruence modular varieties: commutator theory and its uses. In: Structural theory of automata, semigroups, and universal algebra. NATO Science Series II: Mathematics, Physics and Chemistry Series, vol. 207, pp. 273–329. Springer, Dordrecht (2005)

  18. Nagy, G.P., Vojtěchovský, P.: LOOPS: computing with quasigroups and loops in GAP, version 2.2.0. http://www.math.du.edu/loops. Accessed 12 Feb 2014

  19. Niemenmaa M.: Finite loops with nilpotent inner mapping groups are centrally nilpotent. Bull. Aust. Math. Soc. 79(1), 109–114 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. Pflugfelder, H.O.: Quasigroups and Loops: Introduction. Helder520 mann, Berlin (1990)

  21. Smith J.D.H.: Mal’cev varieties. Lecture Notes in Mathematics 554. Springer, Berlin (1976)

    Google Scholar 

  22. Stanovský D., Vojtěchovský P.: Commutator theory for loops. J. Algebra 399, 290–322 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  23. Straubing, H.: Representing functions by words over finite semigroups. In: Technical Report #838. Université de Montréal, Montreal (1992)

  24. Vesanen A.: Solvable groups and loops. J. Algebra 180(3), 862–876 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  25. Wright C. R.B.: On the multiplication group of a loop. Ill. J. Math. 13, 660–673 (1969)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petr Vojtěchovský.

Additional information

Research partially supported by GAČR grant 13-01832S (David Stanovský) and by Simons Foundation Collaboration Grant 210176 (Petr Vojtěchovský).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stanovský, D., Vojtěchovský, P. Abelian Extensions and Solvable Loops. Results. Math. 66, 367–384 (2014). https://doi.org/10.1007/s00025-014-0382-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00025-014-0382-6

Mathematics Subject Classification (1991)

Keywords

Navigation