Skip to main content
Log in

Gravity Maps of Antarctic Lithospheric Structure from Remote-Sensing and Seismic Data

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

Remote-sensing data from altimetry and gravity satellite missions combined with seismic information have been used to investigate the Earth’s interior, particularly focusing on the lithospheric structure. In this study, we use the subglacial bedrock relief BEDMAP2, the global gravitational model GOCO05S, and the ETOPO1 topographic/bathymetric data, together with a newly developed (continental-scale) seismic crustal model for Antarctica to compile the free-air, Bouguer, and mantle gravity maps over this continent and surrounding oceanic areas. We then use these gravity maps to interpret the Antarctic crustal and uppermost mantle structure. We demonstrate that most of the gravity features seen in gravity maps could be explained by known lithospheric structures. The Bouguer gravity map reveals a contrast between the oceanic and continental crust which marks the extension of the Antarctic continental margins. The isostatic signature in this gravity map confirms deep and compact orogenic roots under the Gamburtsev Subglacial Mountains and more complex orogenic structures under Dronning Maud Land in East Antarctica. Whereas the Bouguer gravity map exhibits features which are closely spatially correlated with the crustal thickness, the mantle gravity map reveals mainly the gravitational signature of the uppermost mantle, which is superposed over a weaker (long-wavelength) signature of density heterogeneities distributed deeper in the mantle. In contrast to a relatively complex and segmented uppermost mantle structure of West Antarctica, the mantle gravity map confirmed a more uniform structure of the East Antarctic Craton. The most pronounced features in this gravity map are divergent tectonic margins along mid-oceanic ridges and continental rifts. Gravity lows at these locations indicate that a broad region of the West Antarctic Rift System continuously extends between the Atlantic–Indian and Pacific–Antarctic mid-oceanic ridges and it is possibly formed by two major fault segments. Gravity lows over the Transantarctic Mountains confirms their non-collisional origin. Additionally, more localized gravity lows closely coincide with known locations of hotspots and volcanic regions (Marie Byrd Land, Balleny Islands, Mt. Erebus). Gravity lows also suggest a possible hotspot under the South Orkney Islands. However, this finding has to be further verified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Accardo, N. J., s, D. A., Hernandez, S., Aster, R. C., Nyblade, A., Huerta, A., et al. (2014). Upper mantle seismic anisotropy beneath the West Antarctic Rift System and surrounding region from shear wave splitting analysis. Geophysical Journal International, 198, 414–429.

    Google Scholar 

  • Adams, R. D. (1971). Reflections from discontinuities beneath Antarctica. Bulletin of the Seismological Society of America, 5, 1441–1451.

    Google Scholar 

  • Amante, C., Eakins, B.W. (2009) ETOPO1 1 arc-minute global relief model: Procedures, data sources and analysis. NOAA, Technical memorandum, NESDIS, NGDC-24, p. 19

  • An, M., Wiens, D. A., Zhao, Y., Feng, M., Nyblade, A. A., Kanao, M., et al. (2015). S-velocity model and inferred Moho topography beneath the Antarctic Plate from Rayleigh waves. Journal of Geophysical Research: Solid Earth, 120, 359–383.

    Google Scholar 

  • Bamber, J. L., Ferraccioli, F., Joughin, I., Shepherd, T., Rippin, D. M., Sigert, M. J., et al. (2006). East Antarctic ice stream tributary underlain by major sedimentary basin. Geology, 34(1), 33–36.

    Google Scholar 

  • Bannister, S., Yu, J., Leitner, B., & Kennett, B. L. N. (2003). Variations in crustal structure across the transition from West to East Antarctica Southern Victoria Land. Geophysical Journal International, 155, 870–884.

    Google Scholar 

  • Baranov, A., & Morelli, A. (2013). The Moho depth map of the Antarctica region. Tectonophys, 609, 299–313.

    Google Scholar 

  • Baranov, A., Tenzer, R., Bagherbandi, M. (2018) Combined gravimetric-seismic crustal model for Antarctica. Surveys in Geophysics, 39(1), 23–56.

  • Behrendt, J. C., LeMasurier, W. E., Cooper, A. K., Tessensohn, F., Trehu, A., & Damaske, D. (1991). Geophysical studies of the West Antarctic rift system. Tectonics, 10(6), 1257–1273.

    Google Scholar 

  • Bentley, C. R., & Ostenso, N. A. (1962). On the paper of F.F. Evison, C.E. Ingram, R.H. Orr, and J.H. LeFort (1962), Thickness of the Earth’s crust in Antarctica and surrounding oceans. Geophysical Journal of the Royal Astronomical Society, 6, 292–298.

    Google Scholar 

  • Bialas, R. W., Buck, W. R., Studinger, M., & Fitzgerald, P. (2007). Plateau collapse model for the Transantarctic Mountains West Antarctic Rift System: insights from numerical experiments. Geology, 35(8), 687–690.

    Google Scholar 

  • Block, A. E., Bell, R. E., & Studinger, M. (2009). Antarctic crustal thickness from satellite gravity: implications for the Transantarctic and Gamburtsev Subglacial Mountains. Earth and Planetary Science Letters, 288(1–2), 194–203.

    Google Scholar 

  • Cande, S. C., Stock, J. M., Müller, R. D., & Ishihara, T. (2000). Cenozoic motion between East and West Antarctica. Nature, 404, 145–150.

    Google Scholar 

  • Chaput, J., Aster, R. C., Huerta, A., Sun, X., Lloyd, A., Wiens, D., et al. (2014). The crustal thickness of West Antarctica. Journal of Geophysical Research: Solid Earth, 119, 378–395. https://doi.org/10.1002/2013JB010642.

    Article  Google Scholar 

  • Chen, W., Tenzer, R., & Gu, X. (2014). Sediment stripping correction to marine gravity data. Marine Geodesy, 37(4), 419–439.

    Google Scholar 

  • Conrad, C. P., & Lithgow-Bertelloni, C. (2006). Influence of continental roots and asthenosphere on plate-mantle coupling. Geophysical Research Letters, 33, L05312.

    Google Scholar 

  • Cutnell, J. D., & Kenneth, W. J. (1995). Physics (3rd ed.). New York: Wiley.

    Google Scholar 

  • Dalziel, I. W. D. (1992). Antarctica: a tale of two supercontinents. Annual Review of Earth and Planetary Sciences, 20, 501–526.

    Google Scholar 

  • Dalziel, I. W. D., & Elliot, D. H. (1982). West Antarctica; problem child of Gondwanaland. Tectonics, 1(1), 3–19.

    Google Scholar 

  • Dewart, G. M., & Toksoz, M. N. (1965). Crustal structure in East Antarctica from surface wave dispersion. Journals-Royal Astronomical Society, 10, 127–139.

    Google Scholar 

  • Evison, F. F., Ingham, C. E., Orr, R. H., & Le Fort, J. H. (1960). Thickness of the earth’s crust in Antarctica and the surrounding oceans. Geophysical Journal, 3, 289–306.

    Google Scholar 

  • Fedorov, L. V., Grikurov, G. E., Kurinin, R. G., & Masolov, V. N. (1982). Crustal structure of the Lambert Glacier area from geophysical data. In C. Craddock (Ed.), Antarctic Geoscience (pp. 931–936). Madison: Univ. of Wisconsin Press.

    Google Scholar 

  • Ferraccioli, F., Finn, C. A., Jordan, T. A., Bell, R. E., Anderson, L. M., & Damaske, D. (2011). East Antarctic rifting triggers uplift of the Gamburtsev Mountains. Nature, 479, 388–392.

    Google Scholar 

  • Ferris, J., Johnson, A., & Storey, B. (1998). Form and extent of the Dufek intrusion, Antarctica, from newly compiled aeromagnetic data. Earth and Planetary Science Letters, 154(1–4), 185–202.

    Google Scholar 

  • Forsyth, S. W., Ehrenbarda, R. L., & Chapin, S. (1987). Anomalous upper mantle beneath the Australian-Antarctic discordance. Earth and Planetary Science Letters, 84, 471–478.

    Google Scholar 

  • Fretwell, P., Pritchard, H. D., Vaughan, D. G., Bamber, J. L., Barrand, N. E., Bell, R., et al. (2013). Bedmap2: improved ice bed, surface and thickness datasets for Antarctica. The Cryosphere, 7, 375–393.

    Google Scholar 

  • Gladkikh, V., & Tenzer, R. (2011). A mathematical model of the global ocean saltwater density distribution. Pure and Applied Geophysics, 169(1–2), 249–257.

    Google Scholar 

  • Groushinsky, A. N., Groushinsky, N. P., Stroev, P. A., & Yatsenko, E. V. (1992). The Earth’s crust in Antarctica and the effective relief of the continent. Journal of Geodynamics, 15, 223–228.

    Google Scholar 

  • Hansen, S., Nyblade, A., Pyle, M., Wiens, D., & Anandakrishnan, S. (2009). Using S wave receiver functions to estimate crustal structure beneath ice sheets: an application to the Transantarctic Mountains and East Antarctic craton. Geochemistry, Geophysics, Geosystems, 10, Q08014.

    Google Scholar 

  • Heiskanen, W. H., & Moritz, H. (1967). Physical geodesy. San Francisco: Freeman W.H.

    Google Scholar 

  • Hinze, W. J. (2003). Bouguer reduction density, why 2.67? Geophysics, 68(5), 1559–1560.

    Google Scholar 

  • Huebscher, C., Jokat, W., & Miller, H. (1996). Structure and origin of southern Weddell Sea crust: results and implications. In B. C. Storey, E. C. King, & R. A. Livermore (Eds.), Weddell Sea Tectonics and Gondwana Break-up: Geological Society. London: Geological Society of London.

    Google Scholar 

  • Ito, K., & Ikami, A. (1986). Crustal structure of the Mizuho Plateau, East Antarctica, from geophysical data. Journal of Geodynamics, 6, 285–296.

    Google Scholar 

  • Jacobs, J., Bauer, W., & Fanning, C. M. (2003). Late Neoproterozoic/Early Palaeozoic events in central Dronning Maud Land and significance for the southern extension of the East African Orogen into East Antarctica. Precambrian Research, 126, 27–53.

    Google Scholar 

  • Jacobs, J., Elburg, M., Läufer, A. L., Kleinhanns, I. C., Henjes-Kunst, F., Estrada, S., et al. (2015). Two distinct Late Mesoproterozoic/Early Neoproterozoic basement provinces in central/eastern Dronning Maud Land, East Antarctica: the missing link, 15–21E. Precambrian Research, 265, 249–272.

    Google Scholar 

  • Jacobs, J., Fanning, C. M., Henjes-Kunst, F., Olesch, M., & Paech, H. J. (1998). Continuation of the Mozambique Belt into East Antarctica: Grenville-age metamorphism and polyphase Pan-African high-grade events in central Dronning Maud Land. The Journal of Geology, 106(4), 385–406.

    Google Scholar 

  • Jordan, T. A., Ferraccioli, F., Armadillo, E., & Bozzo, E. (2013). Crustal architecture of the Wilkes Subglacial Basin in East Antarctica, as revealed from airborne gravity data. Tectonophysics, 585, 196–206.

    Google Scholar 

  • Jordan, T. A., Ferraccioli, F., Vaughan, D. G., Holt, J. W., Corr, H., Blankenship, D. D., et al. (2010). Aerogravity evidence for major crustal thinning under the Pine Island Glacier region (West Antarctica). Geological Society of America Bulletin, 122, 714–726.

    Google Scholar 

  • Kiele, J., Marshall, D. L., Kyle, P. R., Kaminuma, K., Shibuya, K., & Dibble, R. R. (1983). Volcanic activity associated and seismicity of Mount Erebus 1982–1983. Antarctica JUS, 18, 41–44.

    Google Scholar 

  • Knopoff, L., & Vane, G. (1978). Age of East Antarctica from surface wave dispersion. Pure and Applied Geophysics, 117, 806–816.

    Google Scholar 

  • Kogan, A. L. (1972). Results of deep seismic soundings of the earth’s crust in East Antarctica. In R. J. Adie (Ed.), Antarctic geology and geophysics (pp. 485–489). Oslo: Universitetsforlag.

    Google Scholar 

  • Kolmakov, A.F., Mishenkin, B.P., Solovyev, D.S. (1975) Deep seismic studies in East Antarctica. Bulletin Soviet Antarctic Expedition, 5–15 (in Russian)

  • Kovach, R. L., & Press, F. (1961). Surface wave dispersion and crustal structure in Antarctica and the surrounding oceans. Annali di Geofisica, 14, 211–224.

    Google Scholar 

  • Laske, G., Masters, G., Ma, Z., & Pasyanos, M. E. (2013). Update on CRUST1.0—A 1-degree global model of Earth’s crust. Geophysical Research Abstracts, 15, 2658.

    Google Scholar 

  • Lawrence, J.F., van Wijk, J.W., Driscoll, N.W. (2007) Tectonic implications for uplift of the Transantarctic Mountains” (PDF), USGS. In: 10th International Symposium on Antarctic Earth Sciences.

  • Lawrence, J. F., Wiens, D. A., Nyblade, A., Anandakrishnan, S., Shore, P. J., & Voigt, D. (2006). Crust and upper mantle structure of the Transantarctic Mountains and surrounding regions from receiver functions, surface waves, and gravity: implications for uplift models (p. 7). Geosyst: Geochemistry, Geophysics.

    Google Scholar 

  • Leitchenkov, G., & Kudryavtzev, G. (1997). Structure and origin of the Earth’s Crust in the Weddell Sea Embayment (beneath the Front of the Filehner and Ronne lee Shelves) from deep seismic sounding data. Polarforschung, 67(3), 143–154.

    Google Scholar 

  • Lloyd, A. J., Wiens, D. A., Nyblade, A. A., Anandakrishnan, S., Aster, R. C., Huerta, A. D., et al. (2015). A seismic transect across West Antarctica: Evidence for mantle thermal anomalies beneath the Bentley Subglacial Trench and the Marie Byrd Land Dome. Journal of Geophysical Research: Solid Earth, 120(12), 2169–9356.

    Google Scholar 

  • Llubes, M., Florsch, N., Legresy, B., Lemoine, J. M., Loyer, S., Crossley, D., et al. (2003). Crustal thickness in Antarctica from CHAMP gravimetry. Earth and Planetary Science Letters, 212, 103–117.

    Google Scholar 

  • Marschall, H. R., Hawkesworth, C., & Leat, P. T. (2013). Mesoproterozoic subduction under the eastern edge of the Kalahari-Grunehogna Craton preceding Rodinia assembly: the Ritscherflya detrital zircon record, Ahlmannryggen (Dronning MaudLand, Antarctica). Precambrian Research, 236, 31–45.

    Google Scholar 

  • Mayer-Gürr, T., Pail, R., Gruber, T., Fecher, T., Rexer, M., Schuh, W.-D., Kusche, J., Brockmann, J.-M., Rieser, D., Zehentner, N., Kvas A., Klinger, B., Baur, O., Höck, E., Krauss, S., Jäggi, A. (2015) The combined satellite gravity field model GOCO05s. Presentation at EGU 2015, Vienna, April 2015

  • Mieth, M., & Jokat, W. (2014). New aeromagnetic view of the geological fabric of southern Dronning Maud Land and Coats Land, East Antarctica. Gondwana Research, 25, 358–367.

    Google Scholar 

  • Molinari, I., & Morelli, A. (2011). EPcrust: a reference crustal model for the European Plate. Geophysical Journal International, 185, 352–364.

    Google Scholar 

  • Morelli, A., & Danesi, S. (2004). Seismological imaging of the Antarctic continental lithosphere: a review. Global and Planetary Change, 42, 155–165.

    Google Scholar 

  • Moritz, H. (2000). Geodetic Reference System 1980. Journal of Geodesy, 74, 128162.

    Google Scholar 

  • O’Donnell, J. P., & Nyblade, A. A. (2014). Antarctica’s hypsometry and crustal thickness: implications for the origin of anomalous topography in East Antarctica. Earth and Planetary Science Letters, 388, 143–155.

    Google Scholar 

  • Okal, E. A. (1981). Intraplate seismicity of Antarctica and tectonic implications. Earth and Planetary Science Letters, 52, 397–409.

    Google Scholar 

  • Ramirez, C., Nyblade, A., Hansen, S. E., Wiens, D. A., Anandakrishnan, S., Aster, R. C., et al. (2016). Crustal and upper-mantle structure beneath ice-covered regions in Antarctica from S-wave receiver functions and implications for heat flow. Geophysical Journal International, 204, 1636–1648.

    Google Scholar 

  • Reading, A. M. (2006). The seismic structure of Precambrian and early Paleozoic terranes in the Lambert Glacier region East Antarctica. Earth and Planetary Science Letters, 244, 44–57.

    Google Scholar 

  • Ritsema, J., van Heijst, J. J., & Woodhouse, J. H. (1999). Complex shear wave velocity structure imaged beneath Africa and Iceland. Science, 286, 1925–1928.

    Google Scholar 

  • Ritzwoller, M. H., Shapiro, N. M., Levshin, A. L., & Leahy, G. M. (2001). Crustal and upper mantle structure beneath Antarctica and surrounding oceans. Journal of Geophysical Research, B, 106(12), 30645–30670.

    Google Scholar 

  • Riva, R. E. M., Gunter, B. C., Urban, T. J., Vermeersen, B. L. A., Lindenbergh, R. C., Helsen, M. M., et al. (2009). Glacial isostatic adjustment over antarctica from combined icesat and grace satellite data. Earth and Planetary Science Letters, 288, 516–523.

    Google Scholar 

  • Rooney, S. T., Blankenship, D. D., & Bentley, C. R. (1987). Seismic refraction measurements of crustal structure in West Antarctica. In G. D. McKenzie (Ed.), Gondwana six: structure, tectonics and geophysics. geophysical monograph series (40th ed., pp. 1–7). Washington: American Geophysical Union.

    Google Scholar 

  • Rouland, D., Xu, S. H., & Schindele, F. (1985). Upper mantle structure in the southeast Indian Ocean: a surface wave investigation. Tectonophys, 114, 281–292.

    Google Scholar 

  • Roult, G., Rouland, D., & Montagner, J. P. (1994). Antarctica II: upper mantle structure from velocities and anisotropy. Physics of the Earth and Planetary Interiors, 84, 33–57.

    Google Scholar 

  • Stern, T. A., & ten Brink, U. S. (1989). Flexural uplift of the Transantarctic Mountains. Journal of Geophysical Research, 94, 10315–10330.

    Google Scholar 

  • Studinger, M., Bell, R. E., Buck, W. R., Karner, G. D., & Blankenship, D. (2004). Sub-ice geology inland of the Transantarctic Mountains in light of new aerogeophysical data. Earth and Planetary Science Letters, 220(3–4), 391–408.

    Google Scholar 

  • Studinger, M., Bell, R. E., Fitzgerald, P., & Buck, W. R. (2006). Crustal architecture of the Transantarctic Mountains between the Scott and Reedy Glacier region and South Pole from aero-geophysical data. Earth and Planetary Science Letters, 250(1–2), 182–199.

    Google Scholar 

  • Studinger, M., Karner, G. D., Bell, R. E., Levin, V., Raymond, C. A., & Tikku, A. A. (2003). Geophysical models for the tectonic framework of the Lake Vostok region East Antarctica. Earth and Planetary Science Letters, 216(4), 663–677.

    Google Scholar 

  • ten Brink, U. S., Hackney, R. I., Bannister, S., Stern, T., & Makovsky, Y. (1997). Uplift of the Transantarctic Mountains and the bedrock beneath the East Antarctic ice sheet. Journal of Geophysical Research, B, 12, 27603–27621.

    Google Scholar 

  • Tenzer, R., Abdalla, A., & Vajda, P. (2010). The spherical harmonic representation of the gravitational field quantities generated by the ice density contrast. Contributions to Geophysics and Geodesy, 40(3), 207–223.

    Google Scholar 

  • Tenzer, R., Bagherbandi, M., Chen, W., & Sjöberg, L. E. (2016). Global isostatic gravity maps from satellite missions and their applications in the lithospheric structure studies. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 10(2), 549–561.

    Google Scholar 

  • Tenzer, R., Bagherbandi, M., & Gladkikh, V. (2012a). Signature of the upper mantle density structure in the refined gravity data. Computational Geosciences, 16(4), 975–986.

    Google Scholar 

  • Tenzer, R., Chen, W., & Jin, S. (2015a). Effect of the upper mantle density structure on the Moho geometry. Pure and Applied Geophysics, 172(6), 1563–1583.

    Google Scholar 

  • Tenzer, R., Chen, W., Tsoulis, D., Bagherbandi, M., Sjöberg, L. E., Novák, P., et al. (2015b). Analysis of the refined CRUST1.0 crustal model and its gravity field. Surveys In Geophysics, 36(1), 139–165.

    Google Scholar 

  • Tenzer, R., Chen, W., & Ye, Z. (2015c). Empirical model of the gravitational field generated by the oceanic lithosphere. Advances in Space Research, 55(1), 72–82.

    Google Scholar 

  • Tenzer, R., & Gladkikh, V. (2014). Assessment of density variations of marine sediments with ocean and sediment depths. Scientific World Journal, 823296, 9.

    Google Scholar 

  • Tenzer, R., Gladkikh, V., Vajda, P., & Novák, P. (2012b). Spatial and spectral analysis of refined gravity data for modelling the crust-mantle interface and mantle-lithosphere structure. Surveys In Geophysics, 33(5), 817–839.

    Google Scholar 

  • Tenzer, R., Novák, P., & Gladkikh, V. (2011). On the accuracy of the bathymetry-generated gravitational field quantities for a depth-dependent seawater density distribution. Studia Geophysica et Geodaetica, 55(4), 609–626.

    Google Scholar 

  • Tenzer, R., Novák, P., & Gladkikh, V. (2012c). The bathymetric stripping corrections to gravity field quantities for a depth-dependent model of the seawater density. Marine Geodesy, 35, 198–220.

    Google Scholar 

  • Tenzer, R. H., Novák, P., Gladkikh, V., & Vajda, P. (2012d). Global crust-mantle density contrast estimated from EGM2008, DTM2008, CRUST2.0, and ICE-5G. Pure and Applied Geophysics, 169(9), 1663–1678.

    Google Scholar 

  • Tenzer, R., Novák, P., Vajda, P., & Gladkikh, V. (2012e). Spectral harmonic analysis and synthesis of Earth’s crust gravity field. Computational Geosciences, 16(1), 193–207.

    Google Scholar 

  • Tenzer, R., Hamayun, K, & Vajda, P. (2009a). Global maps of the CRUST2.0 components stripped gravity disturbances. Journal of Geophysical Research (Solid Earth), 114, B05408.

    Google Scholar 

  • Tenzer, R., Hamayun, K., & Vajda, P. (2009b). A global correlation of the step-wise consolidated crust-stripped gravity field quantities with the topography, bathymetry, and the CRUST 2.0 Moho boundary. Contributions to Geophysics and Geodesy, 39(2), 133–147.

    Google Scholar 

  • Tenzer, R., Hamayun, K., & Vajda, P. (2009c). Global atmospheric corrections to the gravity field quantities. Contributions to Geophysics and Geodesy, 39(3), 221–236.

    Google Scholar 

  • Trey, H., Cooper, A., Pellis, G., della Vedova, B., Cochrane, G., Brancolini, G., et al. (1999). Transect across the West Antarctic rift system in the Ross Sea. Antarctica Tectonophys, 301, 61–74.

    Google Scholar 

  • von Frese, R. R. B., Tan, L., Kim, J. W., & Bentley, C. R. (1999). Antarctic crustal modeling from the spectral correlation of free-air gravity anomalies with the terrain. Journal of Geophysical Research, 104, 25275–25296.

    Google Scholar 

  • Winberry, J. P., & Anandakrishnan, S. (2004). Crustal structure of the West Antarctic rift system and Marie Byrd Land hotspot. Geology, 32, 977–980.

    Google Scholar 

  • Wright, R., & Anderson, J. B. (1982). The importance of sediment gravity flow to sediment transport and sorting in a glacial marine environment: Eastern Weddell Sea, Antarctica. Bulletin of the Geological Society of America, 93(10), 951–963.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Tenzer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tenzer, R., Chen, W., Baranov, A. et al. Gravity Maps of Antarctic Lithospheric Structure from Remote-Sensing and Seismic Data. Pure Appl. Geophys. 175, 2181–2203 (2018). https://doi.org/10.1007/s00024-018-1795-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-018-1795-z

Keywords

Navigation