Skip to main content
Log in

Toward Improved Solar Irradiance Forecasts: Introduction of Post-Processing to Correct the Direct Normal Irradiance from the Weather Research and Forecasting Model

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

Solar electricity production is highly dependent on atmospheric conditions. This study focuses on comparing model forecasts with observations for the period of May–December, 2011. The Weather Research and Forecasting model was run for two nested domains centered on Arizona in order to better capture the complex terrain driven dynamics of the region. The modeling performance from the simulation with the Global Forecast System model output as initial and boundary condition was better, with respect to both direct normal irradiance and global horizontal irradiance, than that with the North American Mesoscale model output. The observed aerosol optical depth is correlated with the water vapor, soil moisture and wind-blown dust and therefore, the aerosol optical depth is parameterized by the modeling outputs for these variables. The aerosol correction factor reduces the relative root mean square error from 12 to 6 %. In cases where dust was transported at high altitude, our algorithm did not correct the bias of direct normal irradiance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

ACM2:

Asymmetric convective model ver. 2

AERONET:

AErosol RObotic NETwork

AOD:

Aerosol optical depth

CALIPSO:

Cloud-aerosol lidar and infrared pathfinder satellite observation

DNI:

Direct normal irradiance

DNIc :

Corrected DNI

DNIf :

Forecasted DNI

ECMWF:

European centre for medium-range weather forecast

GFS:

Global forecast system

GHI:

Global horizontal irradiance

HYSPLIT:

HYbrid Single Particle Lagrangian Integrated Trajectory Model

MBE:

Mean bias error

MOS:

Model output statistics

NAM:

North American Mesoscale

NCEP:

National Center for Environmental Prediction

NDFD:

National Digital Forecast Database

NWP:

Numerical weather prediction

rMBE:

Relative mean bias error

rRMSE:

Relative root mean square error

RMSE:

Root mean square error

RRTMG:

Rapid radiative transfer model global

WRF:

Weather research and forecasting

WSM6:

WRF Single-Moment 6-classes

C water :

Water vapor mixing ratio correction factor

C soil :

Soil moisture correction factor

F :

Forecast

N :

Number of sample

O :

Observation

r w :

Water vapor mixing ratio at 2 m altitude

U 10 :

Wind speed at 10 m altitude

Φ 10 :

Soil moisture from surface to 10 cm depth

γ :

Pearson correlation coefficient

τ min :

Minimum value of AOD

τ wind :

AOD due to wind-blown dust

References

  • Adams, D. K., and A. C. Comrie, 1997: The North American monsoon. Bull. Amer. Meteor. Soc., 78, 2197–2213.

    Article  Google Scholar 

  • Bofinger, S., Heilscher, G., 2006: Solar Electricity Forecast—Approaches and first results. In 21st PV Conference. Dresden, Germany.

  • Breitkreuz H., M. Schroedter-Homscheidt, T. Holzer-Popp, and S. Dech, 2009: Short-Range Direct and Diffuse Irradiance Forecasts for Solar Energy Applications Based on Aerosol Chemical Transport and Numerical Weather Modeling. J. Appl. Meteor. Climatol., 48, 1766–1779.

    Article  Google Scholar 

  • Chen, F. and J. Dudhia, 2001: Coupling an advanced land surface-hydrology model with the Penn State-NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Wea. Rev., 129, 569–585.

    Article  Google Scholar 

  • Chow, C. W., B. Urquhart, M. Lave, A. Dominguez, J. Kleissl, J. Shields, and B. Washom, 2011: Intra-hour forecasting with a total sky imager at the UC San Diego solar energy testbed. Solar Energy, 85, 2881–2893.

    Article  Google Scholar 

  • CREC, 2013: California Renewable Energy Forecasting, Resource Data and Mapping. Final Report BOA-99-248-R.

  • Draxler, R. R., and G. D. Rolph. 2011. HYSPLIT (HYbrid Single-Particle Lagrangian Integrated Trajectory) Model access via NOAA ARL READY Website. http://ready.arl.noaa.gov/HYSPLIT.php.

  • Fu, Q., 1996: An accurate parameterization of the solar radiative properties of cirrus clouds for climate models. J. Climate, 9, 2058–2082.

    Article  Google Scholar 

  • Hagihara, Y., H. Okamoto, and R. Yoshida. 2010. Development of a Combined CloudSat-CALIPSO Cloud Mask to show Global Cloud Distribution RID E-6510-2010. J. Geophy. Res. 115 (2010): D00H33.

  • Heinemann, D., Lorenz, E., Girodo, M., 2006: Forecasting of solar radiation. Solar Energy Management for Electricity Generation. Nova Publishers, New York, pp. 83–94.

    Google Scholar 

  • Hong, S.-Y., and J.-O. J. Lim, 2006: The WRF single-moment 6-class microphysics scheme (WSM6). J. Korean Meteor. Soc., 42, 129–151.

    Google Scholar 

  • Hu, Y. X. and K. Stamnes, 1993: An Accurate Parameterization of the Radiative Properties of Water Clouds Suitable for Use in Climate Models. J. Climate, 6, 728–742.

    Article  Google Scholar 

  • Kim, C. K., M. Leuthold, W. F. Holmgren, A. D. Cronin, and E. A. Betterton, 2015: Improved solar irradiance forecasts: modeling shallow cumulus clouds in the planetary boundary layer. Pure Appl. Geophys., doi:10.1007/s00024-015-1072-3.

    Google Scholar 

  • Lonij, V. P. A., A. E. Brooks, A. D. Cronin, M. Leuthold, and K. Koch, 2013: Intra-hour forecasts of solar power production using measurements from a network of irradiance sensors. Solar Energy, 97, 58–66.

    Article  Google Scholar 

  • Lorenz, E., Hurka, J., Heinemann, D., Beyer, H., 2009: Irradiance forecasting for the power prediction of grid-connected photovoltaic systems. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2(1), 2–10.

    Article  Google Scholar 

  • Lorenzo, A.T., W.F. Holmgren, M. Leuthold, C. K. Kim, A.D. Cronin and E. A. Betterton, 2014: Short-term PV power forecasts based on a real-time irradiance monitoring network. IEEE 40th Photovoltaic Specialist Conference, 8-13 June 2014, 75–79.

  • Mathiesen, P. and J. Kleissl, 2011: Evaluation of Numerical Weather Prediction for Intra-Day Solar Forecasting in the Continental United States. Solar Energy, 85, 967–977.

    Article  Google Scholar 

  • Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophy. Res., 102, 16663–16682.

    Article  Google Scholar 

  • Nickling, W. G., and A.J. Brazel, 1984: Temporal and Spatial Characteristics of Arizona Dust Storms (1965–1980). J. Climate. 4, 645–660.

    Article  Google Scholar 

  • NREL, 2012: U.S. Department of Energy Workshop Report: Solar Resources and Forecasting Technical Report NREL/TP-5500-55432.

  • Perez, R., P. Ineichen, M. Kmiecik, K. Moore, D. Renne, and R. George, 2004: Producing satellite-derived irradiances in complex arid terrain. Solar Energy, 77, 367–371.

    Article  Google Scholar 

  • Perez, R., Moore, K., Wilcox, S., Renné, D., Zelenka, A. 2007: Forecasting solar radiation–preliminary evaluation of an approach based upon the national forecast database. Solar Energy, 81(6), 809–812.

    Article  Google Scholar 

  • Pleim, J. E., 2007: A combined local and nonlocal closure model for the atmospheric boundary layer. Part I: Model description and testing. J. Appl. Meteor. Climatol., 46, 1383–1395.

    Article  Google Scholar 

  • Prabhakar, G., E.A. Betterton, W. Conant, B.M. Herman, 2014: Effect of urban growth on aerosol optical depth—Tucson, Arizona, 35 years later. J. Appl. Meteorol. Climatol., 53, 1876–1885.

    Article  Google Scholar 

  • Ruiz-Arias, J. A., J. Dudhia, F. J. Santos-Alamillos, and D. Pozo-Vázquez, 2013: Surface clear-sky shortwave radiative closure intercomparisons in the Weather Research and Forecasting model. J. Geophy. Res., 118, 9901–9913.

    Google Scholar 

  • Skamarock, W. C., and coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475 + STR, 113 pp.

  • Scott, R. L., G. D. Jenerette, D. L. Potts, and T. E. Huxman, 2009: Effects of seasonal drought on net carbon dioxide exchange from a woody-plant-encroached semiarid grassland. J. Geophy. Res., 114, G04004.

    Article  Google Scholar 

  • Seinfeld, J., and S. Pandis, 2006: Atmospheric Chemistry and Physics. 2nd ed. Wiley.

  • Sorooshian, A., A. Wonaschütz, E. G. Jarjour, B. I. Hashimoto, B. A. Schichtel, and E. A. Betterton, 2011: An aerosol climatology for a rapidly growing arid region (southern Arizona): Major aerosol species and remotely sensed aerosol properties. J. Geophys. Res., 116, D19205, doi:10.1029/2011JD016197.

    Article  Google Scholar 

  • Stull, R. B., 1988: An Introduction to Boundary Layer Meteorology. Kluwer Academic, 666 pp.

  • Zweibel, K., J. Mason and V. Fthenakis, 2008: A Solar Grand Plan. Science American, 298, 64–73.

    Article  Google Scholar 

Download references

Acknowledgments

This study was funded by Tucson Electric Power, Arizona Research Institute for Solar Energy, University of Arizona Renewable Energy Network.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang Ki Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, C.K., Clarkson, M. Toward Improved Solar Irradiance Forecasts: Introduction of Post-Processing to Correct the Direct Normal Irradiance from the Weather Research and Forecasting Model. Pure Appl. Geophys. 173, 1751–1763 (2016). https://doi.org/10.1007/s00024-015-1203-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-015-1203-x

Keywords

Navigation