Skip to main content
Log in

Magnetic Data Interpretation for the Source-Edge Locations in Parts of the Tectonically Active Transition Zone of the Narmada-Son Lineament in Central India

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

The study has been carried out in the transition zone of the Narmada-Son lineament (NSL) which is seismically active with various geological complexities, upwarp movement of the mantle material into the crust through fault, fractures lamination and upwelling. NSL is one of the most prominent lineaments in central India after the Himalaya in the Indian geology. The area of investigation extends from longitude 80.25°E to 81.50°E and latitude 23.50°N to 24.37°N in the central part of the Indian continent. Different types of subsurface geological formations viz. alluvial, Gondwana, Deccan traps, Vindhyan, Mahakoshal, Granite and Gneisses groups exist in this area with varying geological ages. In this study area tectonic movement and crustal variation have been taken place during the past time and which might be reason for the variation of magnetic field. Magnetic anomaly suggests that the area has been highly disturbed which causes the Narmada-Son lineament trending in the ENE-WSW direction. Magnetic anomaly variation has been taken place due to the lithological variations subject to the changes in the geological contacts like thrusts and faults in this area. Shallow and deeper sources have been distinguished using frequency domain analysis by applying different filters. To enhance the magnetic data, various types of derivatives to identify the source-edge locations of the causative source bodies. The present study carried out the interpretation using total horizontal derivative, tilt angle derivative, horizontal tilt angle derivative and Cos (θ) derivative map to get source-edge locations. The results derived from various derivatives of magnetic data have been compared with the basement depth solutions calculated from 3D Euler deconvolution. It is suggested that total horizontal derivative, tilt angle derivative and Cos (θ) derivative are the most useful tools for identifying the multiple source edge locations of the causative bodies in this tectonically active and transition zone area. As this area is highly prone to hydrocarbon bearing zone, hence, the integrated interpretation could reliably image various thrusts and faults boundaries and the source edge locations with dip and strike orientation along with the basement lineation in encouraging exploration for better understanding of the geo-scientific data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Acharya, S. K. and Roy, A. (2000), Tectonothermal history of the central Indian tectonics zone and reactivation of major faults/shear zone, J Geol Soc India, 239–256.

  • Barbosa, V. C. F., Silva, J. B. C., and Medeiros, W. E., (1999), Stability analysis and improvement of structural index estimation in Euler deconvolution: Geophysics, 64, 48–60, doi:10.1190/1.1444529.

  • Bhattyacharjee, S. and Koide, H. (1978), The origin and evaluation of rifts and rift valley structures: a mechanistic interpretation in Tectonic and Geophysics of continental rifts, pp 29–37 (eds I. B. Ramberg and E. R. Neumann) (D’Reidal Publishing Company, England).

  • Bhattacharya, A. and Morad, S. (1993), Proterozoic braided ephemeral fluvial deposits: An example from the Dhandraul sandstone formation of the Kaimur group, Son Valley, Central India. Sediment. Geol., 84, 101–114.

  • Bhattacharji, S., Sharma, R. and Chatterjee, N. (2004), Two- and three- dimensional gravity modeling along western continental margin and intraplate Narmada-Tapti rifts: Its relevance to Deccan flood basalt volcanism, Proc. Indian Acad. Sci. (Earth Planet. Science.), 113, 4, 771–784.

  • Blakely, R.J. and Simpson, R.W. (1986), Approximating edges of source bodies from magnetic or gravity anomalies. Geophysics, 51, 7, 494–1498.

  • Chakraborty, C. and Bhattacharya, A. (1996), FanDelta sedimentation in a foreland moat: Deoland formation, Vindhyan supergroup, Son Valley. In: A. Bhattacharya (Ed.) Recent advances in Vindhyan Geology. Mem. Geol. Soc. India, no. 36, 27–48.

  • Chakraborty, P. P., Banerjee, S., Das., N. G., Sarkar, S. and Bose, P. K. (1996), Volcaniclastics and their sedimentological bearing in Proterozoic Kaimur and Rewa groups in central India. In: A. Bhattacharya (Ed.), Recent advances in Vindhyan Geology, Mem. Geol. Soc. of India, 36, 59–76.

  • Cordell, L, and Grauch. V. J. S. (1982), Mapping basement magnetization zones from aeromagnetic data in the San Juan Basin; New Mexico: Presented at the 52nd Ann. Internat. Mtg., Sot. Explor. Geophys., Dallas; abstracts and biographies, 246–247.

  • Cordell, L, and Grauch. V. J. S. (1985), Mapping basement magnetization zones from aeromagnetic data in the San Juan basin, New Mexico. in Hinze. W. J., Ed.. The utility of regional gravity and magnetic anomaly maps: Sot. Explor. Geophys. 181–197.

  • Cooper, G. R. J., and D. R. Cowan, (2006), Enhancing potential field data using filters based on the local phase, Computers and Geosciences, 32, 1585–1591.

  • Coraggio, F., Bernardelli, P and Gabbriellini, G. (2012), Structural reconstruction using potential field data in hydrocarbon exploration, SEG Las Vegas 2012, Annual Meeting. doi:10.1190/segam2012-0983.1.

  • Directorate General of Hydrocarbons (DGH), (Under Ministry of Petroleum & Natural Gas, Govt. of India. (Web site http://www.dghindia.org).

  • Fairhead, J. D., A. Salem, L. Cascone, M. Hammil, S. Masterton, and E. Samson, (2011), New developments of the magnetic tilt-depth methodto improve structural mapping of sedimentary basins, Geophysical Prospecting, 59, 1072–1086, doi:10.1111/j.1365-2465-2478.2011.01001.x.

  • Fairhead, J.D and Williams, S.E. (2006), Evaluating Normalized Magnetic Derivatives for Structural Mapping, SEG 2006 New Orleans Extended Abstract.

  • Fairhead, D., Williams, S. and Salem, A.B. (2007), Structural mapping from high resolution aeromagnetic data in Namibia using normalized derivatives, EGM 2007 International Workshop, Italy, April 15–18.

  • Ferreira, Francisco J. F.; de Souza, Jeferson; de B. e S. Bongiolo, Alessandra; de Castro, Luís G, (2013), Enhancement of the total horizontal gradient of magnetic anomalies using the tilt angle, Geophysics, 78, 3, J33–J41.

  • Ferreira, F. J. F., L. G. de Castro, A. B. S. Bongiolo, J. de Souza, and M. A. T. Romeiro, (2011), Enhancement of the total horizontal gradient ofmagnetic anomalies using tilt derivatives: Part II—Application to real data, 81st Annual International Meeting, SEG, Expanded Abstracts, 887–891.

  • Francisco, J. F. F., Jeferson, D. S, Alessandra, D. B. and Luís, G.D.C. (2013), Enhancement of the total horizontal gradient of magnetic anomalies using the tilt angle, Geophysics, 78, 3, J33–J41. doi:10.1190/geo2011-0441.1.

  • Ghosh, G.K. and Singh, C.L. (2011), Shallow crustal configuration of the NarmadaSon lineament transition zone near the SahdolKatni area of Central India using simultaneous gravity and magnetic observations, Pure Applied Geophysics, 168, 5, 845–860. doi:10.1007/s00024-010-0174-1.

  • Ghosh, G.K. and Singh, C.L. (2013a), Intrusion and upliftment of Mahakoshal Rocks between Vindhyan and Gondwana in Narmada Son Lineament, central India, Journal Geological Society of India, 81, 556–564. doi:10.1007/s12594-013-0071-1.

  • Ghosh, G.K. and Singh, C.L. (2013b), Crustal thickness mapping in Raipur-Katni area of Narmada Son Lineament in central India derived from 3-d Euler deconvolution of magnetic data, Journal of earth system and Science, 122, 5, 1399–1410. doi:10.1007/s12040-013-0352-5.

  • Grauch, V. J. S., M. N. Hudson, and S. A. Minor, (2001), Aeromagnetic expression of faults that offset basin fill, Albuquerque basin, New Mexico, Geophysics, 66, 707–720.

  • Jain, S. C, Nair, K. K.K and Yedekar, D. B. (1995), Tectonic evolution of the Son-Narmada-Tapti lineament zone, Project Crumansonata, Special Publication. 10, 333–371.

  • Jokhan, Ram, (2005), Hydrocarbon exploration in onland frontier basins of India- Perspectives and challenges, Journal of the Palaeontological Society of India, 50, 1, 1–16.

  • Jokhan, Ram., Shukla, S. N., Parmanik, A, G., Varma, B. K., Gyanesh, Chandra., and Murty, M. S. N, (1996), Recent investigations in the Vindhyan basin:Implications for the basin tectonics; In: Recent advances in Vindhyan geology (ed.) Ajit Bhattacharya, Geol. Soc. India Memoir, 36, 267–286.

  • Kaila, K. L., Murty, P. R. K., Mall, D. M., Dixit, M. M. and Sarkar, D. (1987), Deep Seismic Soundings along HirapurMandla profile: Central India. Geophys. J. R. Astron. Soc., 89, 399–404.

  • Kaila, K. L., Murtthy, P. R. K., Mall, D. M. and Dixit, M. M. (1989), The evolution of the Vindhyan basin vis a vis the NarmadaSon lineament, Central India, from Deep Seismic Soundings, Tectonophysics, 162, 277–289.

  • Kedar, Narain. (1962), Systematic mapping in parts of Dudhi and Robertsganj tehsils of Mirzapur district. U.P. unpublished report, Geological Survey of India, Progress Report.

  • Kumar, P., Tiwari, H. C. and Khandekar, G. (2000), An anomalous high-velocity layer at shallow crustal depths in the Narmada zone, India. Geophysics, J. Int., 142, 95–107.

  • Kumar, S., Schidlowski, M. and Joachimski, M. (2005), Carbon isotope Stratigraphy of the Palaeo-Neoproterozoic Vindhyan Supergroup, Central India: Implications for Basin Evolution and intrabasinal correlation, Journal of the Palaeotological Society of India, 50, 65–81.

  • Lahti, I., and T. Karinen. (2010), Tilt derivative multiscale edges of magnetic data, The Leading Edge, 29, 24–29, doi:10.1190/1.3284049.

  • Mathur, P. (1995), Precambrian emerging frontier of future exploration. Proceeding of International Petroleum conference, Petrotech, 95, II, 401–410.

  • Melo, F. F., Barbosa, V. C. F., Uieda, L., Oliveira V. C. Jr., and silva, J. B. C. (2013), Estimating the nature and the horizontal and vertical positions of 3D magnetic sources using Euler deconvolution: Geophysics, 78, 6, J87–J98, doi:10.1190/geo2012-0515.1.

  • Miller, H. G. and Singh, V. (1994), Potential Field Tilta new concept for location of potential field sources, Journal of Applied Geophysics, 32, 213–217.

  • Mishra, D. C. (2011a), Long hiatus in Proterozoic Sedimentation in India: Vindhyan, Cuddapah and Pakhal Basins-A Plate Tectonics Model, Journal of Geological Society of India. 77, 1, 17–25. doi:10.1007/s12594-011-0004-9.

  • Mishra, D. C. (2011b), A Unified Model of Neoarchean-Proterozoic Convergence and Rifting of Indian Cratons: Geophysical Constraints, International Journal of Geosciences, 610–630. doi:10.4236/ijg.2011.24063.

  • Mukhopadhyay, A., Adhikari, S., Roy, S.P., and Bhattacharyya, S., (2001a), Eustacy, Climate, Tectonics, Sedimentary Environment and the Formation of Permian Coal measures in the Sohagpur coalfield, Madhya Pradesh, India, Geological Survey of India, Spl. Pub. No. 54: pp 305–320.

  • Mukhopadhyay, A., Roy, S.P., and Adhikari, S., (2001b), Reactivation of FaultsDulhara Fault of Sohagpur coalfield, An Example. Geological Survey of India Spl Pub. No. 54: pp 157–162.

  • Murty, A. S. N., Tewari, H. C. and Reddy, P. R. (2004), 2-D crustal velocity structure along HirapurMandla profile in Central India: an update, Pure and Applied Geophysics 161, 165–184.

  • Nabighian, M.N, (1972), The analytic signal of two-dimensional magnetic bodies with polygonal cross-section: its properties and use for automated anomaly interpretation, 37(3), 507–517. doi:10.1190/1.1440276.

  • Nageswara, rao. B., Kumar N., Singh, A.P., Prabhakar, Rao. M. R. K., Mall, D. M. and Singh, B. (2011), Crustal density structure across the Central Indian Shear Zone from gravity data, Journal of Asian Earth Sciences, 42, 3, 341–353. doi:10.1016/j.jseaes.2011.04.023.

  • Naqvi, S.M, Divakar Rao, V., and Narayan, H. (1974), Archaean protocontinental growth of the Indian Shield and the antiquity of the rift valleys, Precamb. Res, 1, 345–398.

  • Pascoe, E. H. (1965), A manual of geology of India and Burma, Vol. I. Govt. of India publication, Calcutta.

  • Phillips, J. D. (2000), Locating magnetic contacts: a comparison of the horizontal gradient, analytic signal, and local wavenumber methods, SEG Expanded Abstracts.

  • Pilkington, M. and Keating, P. (2010), Geologic applications of magnetic data and using enhancements for contact mapping, EGM 2010 International Workshop, Capri, Italy, April 11–14, 2010.

  • Project Crumansonata (1995), Geoscientific studies of the Son-Narmada-Tapti lineament, pp. 371.

  • Qureshy, M. N. (1981), Gravity anomalies, isostasy and crust mantle relations in the Deccan Trap and contiguous regions, India. In: Deccan volcanism and related basalt provinces in other parts in the world, (eds. K. V. Subha Rao and R.N. Sukheswala) Memorial Geol. Soc. of India, 3, 184–197.

  • Radhakrishna, B. P. and Ramakrishnan, M. (1988), Archaean Proterozoic boundary in India, Jour. Geol. Soc. of India, 32, 263–278.

  • Rao, C. K., Ogawa Y., Gokarn, S. G. and Gupta, G. (2004), Electromagnetic imaging of magma across the Narmada Son lineament, central India. Earth Planets Space, 56, 229–238.

  • Reid, A. (2007), Semi-Automated Methods of Potential Field InterpretationInnovations, and Recent and Future Developments, EGM 2007 International Workshop. Capri, Italy, April 15–18.

  • Reid, A. B, Allsop, J. M., Granser, H., Millet, A, J, and Somerton, I. W. (1990), Magnetic interpretation in three dimensions using Euler deconvolution, Geophysics, 55, 80–91.

  • Reid, A.B, and Thurston, J.B. (2014), The structural index in gravity and magnetic interpretation: Errors, uses, and abuses, Geophysics, 79. J61–J66. doi:10.1190/GEO2013-0235.1.

  • Reid, A, B., Ebbing, J. O, and Susan, S. J. (2014), Avoidable Euler Errorsthe use and abuse of Euler deconvolution applied to potential fields, Geophysical Prospecting, 62, 1162–1168, doi:10.1111/1365-2478.12119.

  • Roy, A. and Bandyopadhyay, B. K. (1998), Tectonic significance of ultramafic and associated rocks near Tal in the Mahakoshal belt, Sidhi district, M.P., Journal Geological Society of India, 32, 397–410.

  • Roy, A. and Devrajan, M. K. (2000), A reappraisal of the stratigraphy and tectonics of the Palaeo-Proterozoic Mahakoshal supra crustal belt, central India, Geol. Survey of India, Spl. Publ, 57, 79–97.

  • Salem, A., S. Williams, J. D. Fairhead, D. Ravat and R. Smith, (2007), Tilt-depth method; A simple depth estimation method using first-order magnetic derivatives, SEG The Leading Edge, v. 26/12, 1502–1505.

  • Salem, A., Williams, S., Fairhead, J. D., Smith, R. and Ravat, D.J, (2008), Interpretation of magnetic data using tilt-angle derivatives, Geophysics, 73, L1–L10.

  • Salem, A., S. Williams, E. Samson, D. Fairhead, D. Ravat, and R. J. Blakely, (2010), Sedimentary basins reconnaissance using the magnetic tilt-depth method, Exploration Geophysics, 41, 198–209.

  • Samal, J. K. and Mitra, D. S. (2006), Field study of shear fractures—its tectonic significance and possible application in hydrocarbon exploration—an example from Vindhyan basin. 6th International Conference & Exposition on Petroleum Geophysics “Kolkata 2006” 35–42.

  • Santos, D. F., J. B. C. Silva, V. C. F. Barbosa, and L. F. S. Braga, (2012), Deeppass-An aeromagnetic data filter to enhance deep features in marginal basins: Geophysics, 77, 3, J15–J22, doi:10.1190/geo2011-0146.1.

  • Seshunarayana, T., Viswaja, D., Srinivas, K. N. S. S. S., Rao, S. P., Trupti, S., Kishore, P.P. (2008), Application of High Resolution Seismic Survey in CBM Exploration—A Case study, Sohagpur West Block, Madhya Pradesh, 7th international conference and exposition on petroleum geophysics, Society of Petroleum Geophysicist, Hyderabad.

  • Silva, J. B. C., and Barbosa, V. C. F., (2003), 3D Euler deconvolution: Theoretical basis for automatically selecting good solutions: Geophysics, 68, 1962–1968, doi:10.1190/1.1635050.

  • Silva, J. B. C., Barbosa, V. C. F., and Medeiros, W. E., (2001), Scattering, symmetry, and bias analysis of source-position estimates in Euler deconvolution and its practical implications: Geophysics, 66, 1149–1156, doi:10.1190/1.1487062.

  • Singh, A. P. (1998), 3-D structure and geodynamic evolution of accreted igneous layer in the Narmada-Tapti region (India), Journal of Geodynamics 25, 129–141.

  • Singh, A. P and Meissner, R. (1995), Crustal configuration of the Narmada-Tapti region (India) from gravity studies, Journal of Geodynamics, 20, 111–127.

  • Srivastava, R. P., Vedanti, N. and Dimri, V. P. (2007), Optimum design of a gravity survey network and its application to delineate the JaberaDamoh structure in the Vindhyan Basin, Central India, Pure and Applied Geophysics, 64, 1–14, doi:10.1007/s00024-007-0252-1.

  • Stavrev, P. Y. (1997), Euler deconvolution using differential similarity transformations of gravity or magnetic anomalies, Geophysical Prospecting, 45, 207–246.

  • Thompson, D. T. (1982), EULDPH: A new technique for making computer-assisted depth estimates from magnetic data, Geophysics, 47, 31–37.

  • Thurston and Brown, (1994), Automated source-edge location with a new variable pass-band horizontal-gradient operator: Geophysics, 59, 546–554.

  • Thurston, J. B. and R. S. Smith, (1997), Automatic conversion of magnetic data to depth, dip, and susceptibility contrast using the SPI (TM) method. Geophysics, 62, 807–813.

  • Valdiya, K. S. (1984), Aspects of tectonics focus on south-central Asia, Tata McGraw–Hill, New Delhi, p. 310.

  • Valdiya, K.S., Bhatia, S.B. and Gaur, V.K. (1982), Geology of the Vindhyanchal. Hindustan Publishing Corporation, New Delhi, 231p.

  • Verduzco, B., J. D. Fairhead, C. M. Green, and C. Mackenzie, (2004), New insights into magnetic derivatives. The Leading Edge, 22, 116–119, doi:10.1190/1.1651454.

  • Verma, R. K. and Banerjee, P. (1992), Nature of continental crust along the Narmada-Son lineament inferred from gravity and deep seismic sounding data, Tectonophysics, 202, 375–397.

  • Waghmare, S. Y., Pimprikar, S. D., Gawali, P. B., Carlo, L. and Patil, A.G. (2009), Tectonomagnetic study in the seismoactive area of NarmadaSon lineament, central India, Preliminary results on repeat field observations. Journal of Earth System and Science, 118, 3, 261–272.

  • Wang, W., Pan, yu, and Qiu Z, (2009), A new edge recognition technology based on the normalized vertical derivative of the total horizontal derivative for potential field data, Applied Geophysics, 6, 3, 226–233, doi:10.1007/s11770-009-0026-x.

  • Wijns, C., C. Perez, and P. Kowalczyk, (2005), Theta Map: Edge detection in magnetic data, Geophysics, 70, L39–L43.

  • Yaghoobian, A. Boustead, G. A and Dobush, T. M. (1992), Object delineation using Euler’s Homogeneity Equation. Location and Depth Determination of Buried Ferro-Metallic Bodies, Proceedings of SAGEEP 92, San Diego, California, 613–632.

  • Yedekar, D. B., Jain, S. C., Nair, K. K. K. and Dutta, K. K. (1990), The Central Indian collision suture. In: Precambrian of Central India, Geol. Surv. India, Spl. Pub. no.28, 1–43.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. K. Ghosh.

Additional information

Views expressed in this paper are that of author only and may not necessarily be of Oil India Limited (OIL).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghosh, G.K. Magnetic Data Interpretation for the Source-Edge Locations in Parts of the Tectonically Active Transition Zone of the Narmada-Son Lineament in Central India. Pure Appl. Geophys. 173, 555–571 (2016). https://doi.org/10.1007/s00024-015-1082-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-015-1082-1

Keywords

Navigation