Skip to main content
Log in

Determination of the Crustal and Thermal Structure of the Erzurum-Horasan-Pasinler Basins (Eastern Türkiye) Using Gravity and Magnetic Data

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

The Erzurum-Horasan-Pasinler basin, which surrounds Miocene rocks, is oriented approximately E–W and is located in Eastern Anatolia (Türkiye). East Anatolia, where ophiolitic and young volcanic rocks are widespread, is situated in the Alpine–Himalayan fold-thrust fault belt. The NW–SE trending North Anatolian Transform Fault Zone and the NE–SW trending East Anatolian Transform Fault Zone, formed by the compressional regime of East Anatolia, control the main tectonics of the study region. While the Moho and Conrad depths of the study region are 43.0 and 20.9 km, respectively, the average sedimentary thickness has been determined to be 5.2 km by using the power spectrum method. On the other hand, it is found that the depth of the Moho in the region varies from 41.0 to 44.5 km and the depth of the Conrad discontinuity varies between 22 and 26 km, as computed using empirical equations. The basement of the sedimentary layer is calculated to be 6 km by using inversion results applied to the residual gravity data. The Curie point depth and average heat flow value in this region are calculated as 18.0 km and 89.1 m Wm−2, respectively. Geotherm calculations reveal that the Moho temperature is 1,028.0 °C based on the crustal model. The high heat flow values obtained are attributed to tectonic activities and melting of the lithospheric mantle caused by upwelling of the asthenosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Al-Lazki, A., Sandvol, E., Seber, D., Turkelli, N., Mohamad, R. and Barazangi, M., 2003. Tomographic Pn velocity and anisotropy structure beneath the Anatolian plateau (Eastern Turkey) and the surrounding regions, Geophys. Res. Lett., 30, 8040.

  • Angus, D. A., Wilson, D. C., Sandvol, E. and Ni, J. F., 2006. Lithospheric structure of the Arabian and Eurasian in eastern Turkey from S-wave receiver functions, Geophys. J. Int., 166, 1335–1346.

  • Ateş, A., Kearey, P. and Tufan, S., 1999. New Gravity and Magnetic Maps of Turkey, Geophys. J. Int. 136, 499–502.

  • Ateş, A., Bilim, F. and Büyüksaraç, A., 2005. Curie point depth investigation of Central Anatolia, Turkey, Pure and Applied Geophysics 162, 357–371.

  • Athy, L. F., 1930. Density, porosity and compaction of sedimentary rocks, Bull. Assoc. Pet. Geol., 14, 1–24.

  • Aydın, I. and Karat, H. I., 1995. A general view of Turkiye aeromagnetic maps, Jeofizik 9, 41–44 (in Turkish).

  • Aydın, I., Karat, H. I., and Kocak, A., 2005. Curie point depth map of Turkey, Geophys. J. Int. 162, 633–640.

  • Bansal, A. R., Dimri V. P. and Sagar, G. V., 2006. Depth Estimation from Gravity Data Using the Maximum Entropy Method (MEM) and the Multi Taper Method (MTM), Pure and Applied Geophysics 163, 1417–1434.

  • Barazangi, M., Sandvol, E., and Seber, D., 2006. Structure and tectonic evolution of the Anatolian plateau in eastern Turkey, in Dilek, Y., and Pavlides, S., eds., Post-collisional tectonics and magmatism in the Mediterranean region and Asia: Geological Society of America Special Paper 409, 463–474.

  • Barbosa, V. C. F., Silva, J. B. C. and Medeiros, W. E., 1997. Gravity inversion of basement relief using approximate equality constraints on depths. Geophysics 62, 1745–1757.

  • Barbosa, V. C. F., Silva, J. B. C. and Medeiros, W. E., 1999. Gravity inversion of a discontinuous relief stabilized by weighted smoothness constraints on depth. Geophysics 64, 1429–1437.

  • Bektaş¸ O., Ravat, D., Buyuksarac¸ A., Bilim, F., and Ates¸ A., 2007. Regional Geothermal Characterisation of East Anatolia from Aeromagnetic, Heat Flow and Gravity Data, Pure and Applied Geophysics 164, 975–998.

  • Blakely, R. J., 1995. Potential theory in gravity and magnetic applications: Cambridge University Press.

  • Bhattacharya, B. K., 1965. Two Dimensional Harmonic Analysis as a tool magnetic Interpretation, Geophysics 30, 829–857.

  • Bhattacharya, B. K., 1966. Continuous spectrum of the total magnetic anomaly due to a rectangular prismatic body, Geophysics 31, 97–121.

  • Bhattacharyya, B. K. and Leu, L. K., 1975. Spectral analysis of gravity and magnetic anomalies due to two-dimensional structures. Geophysics 40, 993–1013.

  • Bhattacharyya, B. K. and Leu, L. K., 1977. Spectral Analysis of gravity and magnetic anomalies due to rectangular prismatic bodies. Geophysics 42, 41–50.

  • Bott, M. P. H., 1960, The use of rapid digital computing methods for direct gravity interpretation of sedimentary basins, Geophys. J. R. Astron. Soc. 3 pp. 63–67.

  • Bozkurt, E., 2001. Neotectonics of Turkey—a synthesis. Geodinamica Acta 14, 3–30.

  • Büyüksaraç¸ A., Jordanova, D., Ates¸ A., and Karloukovski, V., 2005. Interpretation of the Gravity and Magnetic Anomalies of the Cappadocia Region, Central Turkey, Pure and Applied Geophysics 162, 2197–2213.

  • Cermak, V., Bodri, L. and Rybach, L. 1991. Radioactive heat production in the continental crust and its depth dependence. In: Cermak, V. and Rybach, L. (eds.), Terrestrial Heat Flow and the Lithosphere Structure (Springer-Verlag, New York, 1991) pp. 23–69.

  • Chai, Y. and Hinze, W. J., 1988. Gravity inversion of an interface above which the density contrast varies exponentially with depth, Geophysics 53, 837–845.

  • Chakravarthi, V., Raghuram, H. M. and Singh, S. B., 2002. 3-D forward gravity modelling of basement interfaces above which the density contrast varies continuously with depth, Computers and Geosciences, 28, 53–57.

  • Chakravarthi, V. and Sundararajan, N., 2004. Automatic 3-D gravity modellind of sedimentary basins with density contrast varying parabolically with depth, Computers and Geosciences, 30, 601–607.

  • Cianciara, B. and Marcak, H., 1976. Interpretation of Gravity Anomalies by Means of Local Power Spectra, Geophysical Prospecting 24, 273–286.

  • Cordell, L., 1973. Gravity analysis using an exponential density-depth function-San Jacinto Graben: California, Geophysics, 38, 684–690.

  • Correia, A. and Jones, F. W., 1995. A magnetotelluric survey in a reported geothermal area in southern Portugal. Proc. World Geothermal Congr. 2, 927–931.

  • Curtis, C. E. and Jain, S., 1975. Determination of Volcanic Thickness and Underlying Structures from Aeromagnetic Maps of the Silet Area of Algeria, Geophysic 40(1), 79–90.

  • Demenitskaya, R. M., 1967. Crust and Mantle of the Earth, Nedra, Moscow, 288 p.

  • Dimitriadis, K., Tselentis, G. A. and Thanassoulas, K., 1987. A BASIC program for 2-D spectral analysis of gravity data and source-depth estimation. Computers and Geosciences 13, 549–560.

  • Dolmaz, M. N., Hisarli, Z. M., Ustaömer, T. and Orbay, N., 2005, Curie point depths based on spectrum analysis of aeromagnetic data, West Anatolian Extensional Province. Turkey. Pure and Applied Geophysics 162, 571–590.

  • Eyuboglu, Y., Santosh, M. and Chung, S. L., 2011a, Crystal fractionation of adakitic magmas in the crust-mantle transition zone: Petrology, geochemistry and U-Pb zircon chronology of the Seme adakites, Eastern Pontides, NE Turkey. Lithos 121, 151–166.

  • Eyuboglu, Y., Santosh, M. and Chung, S. L., 2011b, Petrochemistry and U-Pb ages of adakitic intrusions from the Pulur massif (Eastern Pontides, NE Turkey): Implications for slab roll-back and ridge subduction associated with Cenozoic convergent tectonics in eastern Mediterranean. Journal of Geology 119, 394–417.

  • Gelişli, K. and Maden, N., 2006, Analysis of Potential Field Analysis in Pasinler-Horasan Basin, Eastern Turkey, Journal of the Balkan Geophysical Society, 9, 1, 1–7.

  • Gok, R., Sandvol, E., Turkelli, N., Seber, D. and Barazangi, M., 2003. Sn attenuation in the Anatolian and Iranian plateaus and surrounding regions, Geophys. Res. Lett., 30, 8042.

  • Gök, R., Mellors, R. J., Sandvol, E., Pasyanos, M., Hauk, T., Takedatsu, R., Yetirmishli, G., Teoman, U., Turkelli, N., Godoladze, T. and Javakishvirli, Z., 2011. Lithospheric velocity structure of the Anatolian plateau-Caucasus-Caspian region, J. Geophys. Res. 116, B05303.

  • Hahn, A., King, E. G. and Mishra, D. C., 1976. Depth Estimation of Magnetic Sources by Means of Fourier Amplitude Spectra, Geophysical Prospecting 24, 287–308.

  • He, L., Hu, S., Yang, W. and Wang, J., 2009. Radiogenic heat production in the lithosphere of Sulu ultrahigh-pressure metamorphic belt. Earth and Planetary Science Letters 277, 525–538.

  • Hofstetter, A., Dorbath, C., Rybakov, M. and Goldshmidt, V., 2000. Crustal and upper mantle structure across the Dead Sea rift and Israel from teleseismic P-wave tomography and gravity data, Tectonophysics 327, 37–59.

  • Howell, L. G., Heintz, K. O. and Barry, A., 1966. The development and use of a high precision downhole gravity meter, Geophysics 31, 764–772.

  • Hyndman, R. D., Lewis, T. J. 1999. Geophysical consequences of the Cordillera-Craton thermal transition in southwestern Canada. Tectonophysics 306, 397–422.

  • İlkışık, O. M., 1992. Silica heat flow estimates and lithospheric temperature in Anatolia, Proceedings, XI. Congress of World Hydrothermal Organization, İstanbul, Mayıs 13–18, pp. 92–104.

  • Jokinen, J. and Kukkonen, I. T., 1999. Random modelling of the lithospheric thermal regime: forward simulations applied to uncertainty analysis. Tectonophysics 306, 277–292.

  • Karslı, O., Chen, B., Aydın, F. and Şen, C., 2007. Geochemical and Sr-Nd-Pb isotopic compositions of the Eocene Dölek and Sarıçiçek plutons, Eastern Turkey: implications for magma interaction in the genesis of high-K calc-alkaline granitoids in a post-collision extensional setting, Lithos 98, 67–96.

  • Keskin M., Pearce J. A. and Mitchell J. G., 1998. Volcano-stratigraphy and geochemistry of collision-related volcanism on the Erzurum-Kars plateau, northeastern turkey, Journal of Volcanology and Geothermal Research 85, 355–404.

  • Keskin M., Pearce J. A., Kempton P. D. and Greenwood P., 2006. Magma-crust interactions and magma plumbing in a post collisional setting: geochemical evidence from the Erzurum-Kars volcanic plateau, eastern turkey, In: Postcollisional tectonics and magmatism in the Mediterranean region and Asia. Eds., Dilek Y., Pavlides S. The Geological Society Society of America Special Paper 409, 475–505.

  • Kocyigit, A., Yilmaz, A., Adamia, S. and Kuloshvili, S., 2001. Neotectonics of East Anatolian Plateau (Turkey) and Lesser Caucasus: implications for transition from thrusting to strike-slip faulting, Geodinamica Acta, 14, 177–195.

  • Leão, J. W. D., Menezes, P. T. L., Beltrão, J. F. and Silva, J. B. C., 1996. Gravity inversion of basement relief constrained by the knowledge of depth at isolated points. Geophysics 61, 1702–1714.

  • Maden, N. and Gelişli, K., 2001. Evaluation of the Bouguer Gravity Anomalies of the Erzurum-Horosan-Pasinler area with the power spectrum method, 13th International Petroleum Congress and Exhibition of Turkey, Proceedings, p. 139–147, Ankara-Turkey.

  • Maden, N., 2009. Crustal thermal properties deduced from spectral analysis of magnetic data in Central Pontides (Turkey). Turkish Journal of Earth Sciences 18, 383–392.

  • Maden, N., Gelişli, K., Bektaş, O. and Eyüboğlu, Y., 2009a. Two-and-three-dimensional crust topography of the Eastern Pontides (NE TURKEY). Turkish Journal of Earth Sciences 18, 225–238.

  • Maden, N., Gelişli, K., Eyüboğlu, Y. and Bektaş, O., 2009b. Determination of tectonic and crustal structure of the Eastern Pontide Orogenic Belt (NE Turkey). Pure and Applied Geophysics 166, 1987–2006.

  • Maden, N., 2010. Curie-point depth from spectral analysis of magnetic data in Erciyes stratovolcano (Central TURKEY), Pure and Applied Geophysics 167, 349–358.

  • Maden, N., 2012a. One Dimensional thermal modeling of the Eastern Pontides Orogenic Belt (NE TURKEY), Pure and Applied Geophysics 169, 235–248.

  • Maden, N., 2012b. Two-dimensional geothermal modeling along the Central Pontides magmatic arc (Northern Turkey), Survey in Geophysics, 33, 275–292.

  • Maden, N., 2013. Geothermal Structure of the Eastern Black Sea Basin and the Eastern Pontides Orogenic Belt: Implications for Subduction Polarity of Tethys Oceanic Lithosphere. Geoscience Frontiers 4(4), 389–398.

  • Mishra, D. C. and Naidu, P. S., 1974. Two-Dimensional Power Spectral Analysis of Aeromagnetic Fields Using Fast Digital Fourier Transform Techniques, Geophysical Prospecting 27, 344–361.

  • Moghadam, H. S., Ghorbani, G., Khedr, M. Z., Fazlnia, N., Chiaradia, M., Eyuboglu, Y., Santosh, M., Francisco, C. G., Lopez, M., Gourgaud, A. and Arai, S., 2014. Late Miocene K-rich volcanism in the Eslamieh Peninsula (Saray), NW Iran: Implications for geodynamic evolution of the Turkish–Iranian High Plateau. Gondwana Research, 26, 1028–1050.

  • Murthy, I. V. R. and Rao, S. J., 1989. A Fortran 77 program for inverting gravity anomalies of two-dimensional basement structures, Computers and geosciences 15, 1149–1156.

  • Naidu, P. S., 1970. Statistical Structure of Aeromagnetic Field, Geophysics 35, 279–292.

  • Nwogbo, P. O., 1998. Spectral prediction of magnetic sources depths from simple numerical models, Computers and Geosciences, 24, 9, 847–852.

  • Okubo, Y., Graf, J. R., Hansen, R. O., Ogawa, K., and Tsu, H., 1985. Curie Point Depths of the Island of Kyushu and Surrounding Areas, Japan, Geophysics 53, 481–494.

  • Okubo Y., Tsu H. and Ogawa K., 1989. Estimation of Curie point temperature and geothermal structure of island arcs of Japan. Tectonophysics 159, 279–290.

  • Özdemir, Y., Blundy, J. and Güleç, N., 2011. The importance of fractional crystallization and magma mixing in controlling chemical differentiation at Süphan stratovolcano, eastern Anatolia, Turkey, Contributions to Mineralogy and Petrology 162, 573–597.

  • Pal, P. C., Khurana, K. K. and Unnikrishna, P., 1979. Two examples of spectral approach to source depth determination in gravity and magnetics, Pure and Applied Geophysics 117, 772–783.

  • Pamukcu, O. A., Akçığ, Z., Demirbaş, Ş. and Zor, E., 2007. Investigation of Crustal Thickness in Eastern Anatolia Using Gravity, Magnetic and Topographic Data, Pure and Applied Geophysics 11, 1420–9136.

  • Pearce, J. A., Bender, J. F., De Long, S. E., Kidd, W. S. F., Low, P. J., Güner, Y., Şaroglu, F., Yılmaz, Y., Moorbath, S. and Mitchell, J. G., 1990. Genesis of collision volcanism in Eastern Anatolia, Turkey. In: Le Fort, J. A. Pearce and A. Pecher (Editors), Collision Magmatism, J.Volcanol. Geotherm. Res. 44, 184–229.

  • Pelin, S., Özsayar T., Gedik, I. and Tokel, S., 1980. Geological investigation of Pasinler (Erzurum) Basin for oil, MTA 729, 25–40.

  • Pollack, H. N. and Chapman, D. S., 1977. On the regional variation of heat flow, geotherms and lithosphere thickness. Tectonophysics 38, 279–296.

  • Ram Babu, H. V., 1997. Average crustal density of the Indian litosphere: an inference from gravity anomalies and deep seismic soundings, Journal of Geodynamics, 23, 1–4.

  • Rao, D. B. 1990. Analysis of gravity anomalies of sedimentary basins by an asymmetrical trapezoidal model with quadratic density function, Geophysics 55, 226–231.

  • Rao, R. U. M., Verma, R. K. and Gupta, M. L., 1970. Heat flow at Dam and Mohapani, Satpura Gondwana basin India, Earth Planet. Sci. Lett. 7, 406–412.

  • Reilinger, R. E., McClusky, S. C., Oral, M. B., King, R. W., Toksoz, M. N., Barka, A. A., Kinik, I., Lenk, O. and Sanli, I., 1997. Global Positioning System measurements of present-day crustal movements in the Arabia-Africa-Eurasia plate collision zone. Journal of Geophysical Research 102(B5), 9983–9999.

  • Rimi, A., 1999. Mantle heat flow and geotherms for the main geologic domains in Morocco. Int. Journ. Earth Sciences 88, 458–466.

  • Rivero, L., Pinto, V. and Casas, A., 2002. Moho depth structure of the eastern part of the Pyrenean belt derived from gravity data. J. Geodyn. 33, 315–332.

  • Sandvol, E. and Zor, E., 2004. Upper mantle P and S-wave velocity structure beneath eastern Anatolian plateau, EOS, Trans. Am. Geophys. Un., AGU Fall Meeting 2004, S13B–1056.

  • Seber, D., Sandvol, E., Brindisi, C. and Barazangi, M., 2001. Crustal model for the Middle East and North Africa region: implications for the isostatic compensation mechanism, Geophys. J. Int., 147, 630–638.

  • Sharma, S. R., Rao, V. K., Mall, D. M. and Gowd, T. N., 2005. Geothermal structure in a seismoactive region of Central India, Pure and Applied Geophysics 162, 129–144.

  • Spector, A. and Bhattacharya, B. K., 1966. Energy Spectrum and Autocorelation Functions of Anomalies Because of Simple Magnetic Models, Geophysical Prospecting 14, 242–272.

  • Spector, A. and Grant, F. S., 1970. Statistical models for interpreting aeromagnetic data, Geophysics 35, 293–302.

  • Stampolidis, A., Kane, I., Tsokas, G. N. and Tsourlos, P., 2005. Curie point depths of Albania inferred from ground total field magnetic data. Surveys in Geophysics 26, 461–480.

  • Şengör, A. M. C. and Kidd, W. S. F., 1979. Post-collisional tectonics of the Turkish-Iranian plateau and a comparison with Tibet, Tectonophysics 55, 361–376.

  • Şengör, A. M. C. and Yılmaz, Y., 1981. Tethyan evolution of Turkey: a plate tectonic approach, Tectonophysics, 75, 181–241.

  • Şengör, A. M. C., Görür, N. and Şaroğlu, F., 1985. Strike-slip faulting and related basin formation in zones of tectonic escape: Turkey as a case study. In: Biddle, K. T., Christie-Blick, N. (Eds.), Strike-slip deformation, basin formation and sedimentation. Society of Economy, Palaeontology and Mineralogy Special Publication 37, 227–264.

  • Şengör, A. M. C., Özeren, S., Genç, T. and Zor, E., 2003. East Anatolian high plateau as a mantle supported, north-south shortened domal structure, Geophys. Res.Lett., 30(24).

  • Tanaka, A., Okubo, Y., and Matsubayashi, O., 1999. Curie-point depth based on spectrum analysis of the magnetic anomaly data in East and Southeast Asia, Tectonophys. 306, 461–470.

  • Tezcan, A. K., 1979. Geothermal studies, their present status and contribution to heat flow contouring in Turkey. In Terrestrial Heat Flow in Europe (eds. Cermak, V. and Rybach, L.), Springer, Berlin, pp. 283–291.

  • Tezcan, A. K., 1995. Geothermal explorations and heat flow in Turkey, in: Terrestrial Heat Flow and Geothermal Energy in Asia. Edited by: Gupta, M. L. and Yamano, M., Science Publishers, Lebanon, New Hampshire, 23–42.

  • Tezcan, A. K. and Turgay, M. I., 1989. Heat flow map of Turkey, General Directorate of Mineral Research and Exploration (MTA), Department of Geophysics Research, Ankara (in Turkish, unpublished).

  • Treitel, S., Clement, W. G. and Kaul, R. K., 1971. The Spectral Determination of Depths to Buried Magnetic Basement Rocks, Geophys. Jour. Roy. Astr. Soc. 24, 415–428.

  • Turcotte, D. L. and Schubert, G., 1982. Geodynamics Applications of Continuum Physics to Geologic Problems. Wiley, New York, 450 pp.

  • Visweswara Rao, C., Chakravarthi, V. and Raju, M. L., 1993. Parabolic Density function in sedimentary basin modelling, Pure and Applied Geophysics 3, 493–501.

  • Visweswara Rao, C., Chakravarthi, V., and Raju, M. L., 1994. Forward modelling: Gravity anomalies of two-dimensional bodies of arbitrary shape with hyperbolic and parabolic density functions, Computer and Geosciences 20, 873–880.

  • Wollard, G. P., 1959. Crustal structure from gravity and seismic soundings, J. Geophys. Res., 64, 1524–1544.

  • Wollard, G. P. and Strange, W. E., 1962. Gravity anomalies and crust of the earth in the pacific basin, in: The crust of the Pacific basin. Geophysical Monograph 6, 12.

  • Yılmaz, Y., Şaroğlu, F. and Güner, Y., 1987. Initiation of the neomagnetism in Eastern Anatolia, Tectonophysics, 134, 177–199.

  • Yılmaz Y., 1993. New evidence and model on the evolution of the southeast Anatolian orogen, Geol. Soc. Am. Bull. 105, 251–271.

  • Zor, E., Sandvol, E., Gurbuz, C., Turkelli, N., Seber, D. and Barazangi, M., 2003. The crustal structure of the East Anatolian plateau (Turkey) from receiver functions, Geophys. Res. Lett., 30, 8044.

Download references

Acknowledgements

The authors are grateful to Valeria C. F. Barbosa for his editorial advice to improve the quality of this manuscript. We also thank anonymous referees for their thorough critical and constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nafiz Maden.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maden, N., Aydin, A. & Kadirov, F. Determination of the Crustal and Thermal Structure of the Erzurum-Horasan-Pasinler Basins (Eastern Türkiye) Using Gravity and Magnetic Data. Pure Appl. Geophys. 172, 1599–1614 (2015). https://doi.org/10.1007/s00024-014-1001-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-014-1001-x

Keywords

Navigation