Skip to main content
Log in

Analytical Solutions for Tsunami Waves Generated by Submarine Landslides in Narrow Bays and Channels

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

Analytical theory of tsunami wave generation by submarine landslides is extended to the case of narrow bays and channels of different geometry, in the shallow-water theory framework. New analytical solutions are obtained. For a number of bottom configurations, the wave field can be found explicitly in the form of the Duhamel integral. It is described by three waves: one forced wave propagating together with the landslide and two free waves propagating in opposite directions. The cases for bays with triangular (V-shaped bay), parabolic (U-shaped bay), and rectangular cross-sections are discussed in detail. The dynamics of the offshore-propagating wave in linearly inclined bays of different cross-section are also studied asymptotically for the resonant moving landslide. Different cases of landslides of increasing and decreasing volume are considered. It is shown that even if the landslide is moving under fully resonant conditions, the amplitude of the propagating tsunami wave may still be bounded, depending on the type of the landslide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  • Altinok, Y., Tinti, S., Alpar, B., Yalciner, A.C., Ersoy, S., Bortolucci, E., and Armigliato, A. 2001. The tsunami of August 17, 1999 in Izmit Bay, Turkey, Natural Hazards, 24, 133–146.

  • Assier-Rzadkiewicz, S., Heinrich, P., Sabatier, P.C., Savoyer, B., and Bourillet, J.F. 2000. Numerical modeling of a landslide-generated tsunami: the 1979 Nice event, Pure Appl. Geophys., 157, 1707–1727.

  • Bardet, J.P., Synolakis, C.E., Davies, H.L., Imamura, F., and Okal, E.A. 2003. Landslide tsunamis: Recent findings and research directions, Pure Appl. Geophys., 160 (10–11), 1793–1809.

    Google Scholar 

  • Courant, R., and Hilbert, D. 1989. Methods of Mathematical Physics. John Wiley & Sons Inc, 598.

  • Didenkulova, I., Nikolkina, I., and Pelinovsky, E. 2011. Resonant amplification of tsunami waves generated by an underwater landslide, Doklady Earth Sci., 436(1), 66–69.

    Google Scholar 

  • Didenkulova, I., Nikolkina, I., Pelinovsky, E., and Zahibo, N. 2010. Tsunami waves generated by submarine landslides of variable volume: analytical solutions for a basin of variable depth, Nat. Hazards Earth Syst. Sci., 10, 2407–2419.

    Google Scholar 

  • Didenkulova, I., and Pelinovsky, E. 2009. Non-dispersive traveling waves in strongly inhomogeneous water channels, Phys. Lett. A, 373 (42), 3883–3887.

    Google Scholar 

  • Didenkulova, I., and Pelinovsky, E. 2010. Traveling water waves along a quartic bottom profile, Proc. Estonian Acad. Sci., 59(2), 166–171.

  • Didenkulova, I., and Pelinovsky, E. 2011a. Runup of tsunami waves in U-shaped bays, Pure Appl. Geophys., 168(6–7), 1239–1249.

  • Didenkulova, I., and Pelinovsky, E. 2011b. Nonlinear wave evolution and runup in an inclined channel of a parabolic cross-section, Phys. Fluids, 23(8), 086602, doi:10.1063/1.3623467.

  • Didenkulova, I., Pelinovsky, E., and Soomere, T. 2008. Exact travelling wave solutions in strongly inhomogeneous media, Estonian Journal of Engineering, 14(3), 220–231.

    Google Scholar 

  • Didenkulova, I., Pelinovsky, E., and Soomere, T. 2009. Long surface wave dynamics along a convex bottom, J Geophys Res Oceans, 114, C07006. doi:10.1029/2008JC005027.

  • Di Risio, M., and Sammarco, P. 2008. Analytical Modeling of Landslide-Generated Waves, J. Waterway, Port, Coastal, Ocean Eng., 134(1), 53–60.

  • Fine, I.V., Rabinovich, A.B., Bornhold, B.D., Thomson, R.E., and Kulikov, E.A. 2005. The Grand Banks landslide-generated tsunami of November 18, 1929: preliminary analysis and numerical modeling, Marine Geology, 215, 45–57.

  • Fritz, H.M., Mohammed, F., and Yoo, J. 2009. Lituya Bay landslide impact generated mega-tsunami 50(th) anniversary, Pure Appl. Geophys., 166 (1–2), 153–175.

  • Grimshaw, R., Pelinovsky, D., and Pelinovsky, E. 2010. Homogenization of the variable—speed wave equation, Wave Motion, 47 (8), 496–507.

  • Gusiakov, V.K. 2009. Tsunami history: recorded, The Sea. Tsunamis (edited by A. R obinson, E. Bernard), Harvard University Press, Cambridge, 23–54.

  • Harbitz, C.B., Pedersen, G., and Gjevik, B. 1993. Numerical simulation of large water waves due to landslides, J. Hydraulic Eng., 119, 1325–1342.

  • Heinrich, P., Guibourg, S., Mangeney, A., and Roche, R. 1999. Numerical modeling of a landslide-generated tsunami following a potential explosion of the Montserrat volcano, Phys. Chem. Earth (A), 24 (2), 163–168.

    Google Scholar 

  • Imamura, F., and Gica, E.C. 1996. Numerical model for tsunami generation due to subaqueous landslide along a coast, Science of Tsunami Hazards, 14 (1), 13–28.

  • Keating, B.H., Waythomas, C.F., and Dawson, A.G. 2000. Landslides and Tsunamis, Pure Appl. Geophys., 157, 871–1313.

  • Kuo, C.Y., Tai, Y.C., Bouchut, F., Mangeney, A., Pelanti, M., Chen, R.F., and Chang, K.J. 2008. Simulation of Tsaoling landslide, Taiwan, based on Saint Venant equations over general topography, Engineering Geology, doi:10.1016/j.enggeo.2008.10.003.

  • Liu, P.L.-F., Lynnett, P., and Synolakis, C.E. 2003. Analytical solutions for forced long waves on a sloping beach, J. Fluid Mech., 478, 101–109.

    Google Scholar 

  • Liu, P.L.-F., Wu, T.R., Raichlen, F., Synolakis, C.E., and Borrero, J.C. 2005. Runup and rundown generated by three-dimensional sliding masses, J. Fluid Mech., 536, 107–144.

    Google Scholar 

  • Mangeney, A., Heinrich, P.H., Rachel, R., Boudon, G., and Cheminee, J.L. 2000. Modeling of debris avalanche and generated water waves: Application to real and potential events in Montserrat, Phys Chem Earth (A), 25 (9–11), 741–745.

    Google Scholar 

  • McSaveney, M.J., Goff, J.R., Darby, D.J., Goldsmith, P., Barnett, A., Elliott, S., and Nongkas, M. 2000. The 17 July 1998 tsunami, Papua New Guinea: Evidence and initial interpretation. Marine Geology, 170, 81–92.

  • Mei, C.C. 1989. The Applied Dynamics of Ocean Surface Waves, World Sci., Singapore, 740.

  • Novikova, L.E., and Ostrovsky, L.A. 1978. Excitation of tsunami waves by a travelling displacement of the ocean bottom, Marine Geodesy, 2, 365–380.

    Google Scholar 

  • Okal, E.A., Fryer, G.J., Borrero, J.C., and Ruscher, C. 2002. The landslide and local tsunami of 13 September 1999 on Fatu Hiva (Marquesas islands; French Polynesia), B. Soc. Géol. Fr., 173 (4), 359–367.

  • Okal, E.O., and Synolakis, C.E. 2003. Theoretical comparisons of tsunamis from dislocations and slides, Pure Appl. Geophys., 160, 2177–2188.

    Google Scholar 

  • Pelinovsky, E.N. 1996. Hydrodynamics of tsunami waves, Institute of Applied Physics, Nizhny Novgorod (in Russian).

  • Pelinovsky, E., and Poplavsky, A. 1996. Simplified model of tsunami generation by submarine landslides, Phys. Chem. Earth, 21, 13–17.

    Google Scholar 

  • Pudasaini, S.P., and Hutter, K. 2007. Avalanche Dynamics: Dynamics of Rapid Flows of Dense Granular Avalanches, Springer, 602.

  • Ranguelov, B., Tinti, S., Pagnoni, G., Tonini, R., Zaniboni, F., and Armigliato, A. 2008. The nonseismic tsunami observed in the Bulgarian Black Sea on 7 May 2007: Was it due to a submarine landslide? Geophys. Res. Lett., 35 (18), L18613.

  • Sammarco, P., and Renzi, E. 2008. Landslide tsunamis propagating along a plane beach, J. Fluid Mech., 598, 107–119.

    Google Scholar 

  • Synolakis, C.E. 1991. Green law and the evolution of solitary waves. Phys. Fluids, 3 (3), 490–491.

  • Synolakis, C.E., Bardet, J., Borrero, J.C., Davies, H.L., Okal, E.A., Silver, E.A., Sweet, S., and Tappin, D.R. 2002. The slump origin of the 1998 Papua New Guinea Tsunami, Proc. R. Soc. Lond. A, 458, 763–789.

  • Tinti, S., and Bortolucci, E. 2000. Analytical investigation of tsunamis generated by submarine slides, Annali di Geofisica, 43, 519–536.

  • Tinti, S., Bortolucci, E., and Chiavettieri, C. 2001. Tsunami excitation by submarine slides in shallow-water approximation, Pure Appl. Geophys., 158, 759–797.

    Google Scholar 

  • Tinti, S., Pagnoni, G., and Zaniboni, F. 2006. The landslides and tsunamis of the 30th of December 2002 in Stromboli analysed through numerical simulations, Bull. Volcanol., 68, 462–479.

  • Ward, S.N. 2001. Landslide tsunami, J. Geophys. Res., 106, 11201–11215.

  • Yalciner, A.C., Pelinovsky, E.N., Okal, E., and Synolakis, C.E. 2003. Submarine landslides and tsunamis. NATO Science Series: IV. Earth and Environmental Sciences, 21, Kluwer.

Download references

Acknowledgments

This research was supported by the European Union through the European Regional Development Fund. Partial support from targeted financing by the Estonian Ministry of Education and Research (grant SF0140007s11), the Estonian Science Foundation (grant 8870), the RFBR (grants 11-05-00216 and 11-02-00483), and the MK (grant 1440.2012.5) is also gratefully acknowledged. ID acknowledges the support provided by the Alexander von Humboldt Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ira Didenkulova.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Didenkulova, I., Pelinovsky, E. Analytical Solutions for Tsunami Waves Generated by Submarine Landslides in Narrow Bays and Channels. Pure Appl. Geophys. 170, 1661–1671 (2013). https://doi.org/10.1007/s00024-012-0510-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-012-0510-8

Keywords

Navigation