Skip to main content
Log in

DART® Tsunameter Retrospective and Real-Time Data: A Reflection on 10 Years of Processing in Support of Tsunami Research and Operations

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

In the early 1980s, the United States National Oceanic and Atmospheric Administration Pacific Marine Environmental Laboratory established the fundamentals of the contemporary tsunameter network deployed throughout the world oceans. The decades of technological and scientific advancements that followed led to a robust network that now provides real-time deep-ocean tsunami observations routinely incorporated into operational procedures of tsunami warning centers around the globe. All aspects of the network, from research to operations, to data archive and dissemination, are conducted collaboratively between the National Data Buoy Center, the Pacific Marine Environmental Laboratory, and the National Geophysical Data Center, with oversight by the National Weather Service. The National Data Buoy Center manages and conducts all operational network activities and distributes real-time data to the public. The Pacific Marine Environmental Laboratory provides the research component in support of modeling and network enhancements for improved forecasting capability. The National Geophysical Data Center is responsible for the processing, archiving, and distribution of all retrospective data and integrates DART® tsunameter data with the National Geophysical Data Center global historical tsunami database. The role each agency plays in collecting, processing, and disseminating observations of deep-ocean bottom pressure is presented along with brief descriptions of data processing procedures. Specific examples of challenges and the approaches taken to address these are discussed. National Geophysical Data Center newly developed and available tsunami event web pages are briefly described and demonstrated with processed data for both the Tohoku 11 March 2011 and the Haiti 12 January 2010 tsunami events.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Cartwright, D.E., Spencer, R., Vassie, J.M., and Woodworth, P.L. (1988), The tides of the Atlantic Ocean, 60°N to 30°S, Phil. Trans. Roy. Soc., London, A32J, 513-563.

  • Chadwick Jr., W.W., Butterfield, D.A., Embley, R.W., Meinig, C.S.S., Nooner, S., Zumberge, M., and Fox, C.G. (2002), Recent results from seafloor instruments at the NeMO Observatory, Axial Seamount, Juan de Fuca Ridge. Eos Trans. AGU 83 (Abstract T22A-1132).

  • Dunbar, P.K., Stroker, K.J., Brocko, V.R., Varner, J.D., McLean, S.J., Taylor, L.A., Eakins, B.W., Carignan, K.S., and Warnken, R.R. (2008), Long-term tsunami data archive supports tsunami forecast, warning, research and mitigation, Pure Appl. Geophys. 165, 2275–2291.

  • Eblé, M.C., and González, F.I. (1991), Deep-ocean bottom pressure measurements in the Northeast Pacific, J. Atmos. Ocean. Tech. 8(2), 221–233.

  • Eblé, M.C., González, F.I., Mattens, D.M., and Milburn, D.M. (1989), Instrumentation, field operations, and data processing for PMEL deep ocean bottom pressure measurements. NOAA Tech. Memo. ERL PMEL-89, NTIS: PB90-114018, 71 pp.

  • Eblé, M., Titov, V., Denbo, D., Moore, C., Mungov, G., and Bouchard, R. (2011). Signal-to-noise ratio and the isolation of the 11 March 2011 Tohoku tsunami in deep-ocean tsunameter records, OCEANS ‘11 MTS/IEEE KONA, http://www.oceans11mtsieeekona.org/.

  • Emery, W.J., and Thomson, R.E. (2001), Data Analysis Methods in Physical Oceanography, 2nd and Revised Edition, (Elsevier, Amsterdam, 2001), 638 p.

  • Filloux, J.H. (1970), Bourdon tube deep see tide gauges. In: Tsunamis in the Pacific Ocean, University Press, Honolulu, 223–238.

  • Filloux, J H. (1971), Deep-sea tide observations from the Northeast Pacific. Deep-Sea Research 18, 275–284.

  • Filloux, J.H. (1982), Tsunami recorded on the open ocean floor, Geophys. Res. Lett. 9, 25–28.

  • Filloux, J.H. (1983), Pressure fluctuations on the open-ocean floor off the Gulf of California: tides, earthquakes and tsunamis. J. Phys. Oceanogr. 13(5), 783–796.

  • Foreman, M.G.G. (1977, revised 2004). Manual for Tidal Heights Analysis and Prediction. Pacific Marine Science Report. 77–10. Institute of Ocean Sciences, Patricia Bay, 58 pp. http://www.pac.dfo-mpo.gc.ca/science/oceans/tidal-marees/index-eng.htm.

  • Foreman, M.G.G., Cherniawsky, J., and Ballantyne, V.A. (2009), Versatile harmonic tidal analysis: Improvements and applications. J. Atmos. Oceanic Technol. 26, 806–817. doi: 10.1175/2008JTECHO615.1.

  • González, F.I., Milburn, H.M., Bernard, E.N., and Newman J. (1998), Deep-ocean assessment and reporting of tsunamis (DART): Brief overview and status report. Proceedings of the International Workshop on Tsunami Disaster Mitigation, Tokyo, Japan, 19–22 January 1998, 118–129.

  • González, F.I., Bernard, E.N., Meinig, E., Eblé, M., Mofjeld, H.O., and Stalin S. (2005), The THMP tsunameter network, Natural Hazards 35(1), Special Issue, U.S. National Tsunami Hazard Mitigation Program, 25–39.

  • Goring, D.G., and Nikora, V.I. (2002), Despiking acoustic Doppler velocimeter data, J. Hydraul. Eng. 128(1), 117–126.

  • Harris, M.J., and Tucker, M.J. (1963), A pressure recorder for measuring sea waves. Instrument Practice 17, 1055–1059.

  • Irish, J.D., and Snodgrass, F.E. (1972), Quartz crystals as multipurpose oceanographic sensors. 1. Pressure. Deep-Sea Res. 19(2), 165–169.

  • Joseph, A. (2011), Tsunamis: Detection, Monitoring, and Early-Warning Technologies. Academic Press, 448 p.

  • Kulikov, E.A., and Rabinovich, A.B. (1983), Radiation tides in the ocean and atmosphere, Trans. (Doklady) USSR Academy of Sciences, Earth Science Sections, 271 (5), 221–225.

  • Kulikov, E.A., Rabinovich, A.B., Spirin, A.I., Poole, S.L., and Soloviev, S.L. (1983), Measurement of tsunamis in the open ocean, Marine Geodesy 6 (3–4), 311–329.

  • Lefcort, M.D. (1968), Vibrating wire pressure transducer technology, J. Atmos. Oceanic Technol. 2, 37–44.

  • Mofjeld, H. (1997), Tsunami detection algorithm. (Not published paper, available at http://nctr.pmel.noaa.gov/tda/documentation.html).

  • Mofjeld, H.O. (2009), Tsunami measurements. In The Sea, Volume 15: Tsunamis (eds. A. Robinson and E. Bernard), (Harvard University Press, Cambridge, MA, 2009) pp. 201–235.

  • Mofjeld, H.O., and Wimbush, M. (1977), Bottom pressure observations in the Gulf of Mexico and Caribbean Sea, Deep-Sea Res. 24, 987–1004.

  • Mofjeld, H.O., Whitmore, P.M., Eblé, M.C., González, F.I., and Newman, J.C. (2001), Seismic-wave contributions to bottom pressure fluctuations in the North Pacific-Implications for the DART Tsunami Array. In Proc. Intern. Tsunami Symposium 2001, Session S-10, Seattle, WA, 7–10 August 2001, 633–641.

  • Parker, B. (2007), Tidal Analysis and Prediction, NOAA Special Publication NOS CO-OPS 3; 378 p.

  • Rabinovich, A.B. (1993), Long Ocean Gravity Waves, Trapping, Resonance and Leaking. Gidrometeoizdat, Sankt-Petersburg (in Russian), 325 p.

  • Rabinovich, A.B., Stroker, K., Thomson, R., and Davis E. (2011), DARTs and CORK in Cascadia Basin: High-resolution observations of the 2004 Sumatra tsunami in the northeast Pacific, Geophys. Res. Lett. 38, L08607, 5 pp., doi:10.1029/2011GL047026.

  • Snodgrass F.E. (1968), Deep-sea instrument capsule. Science 162, 78–87.

  • Snodgrass, F., Brown, W., and Munk, W. (1975), MODE: IGPP Measurements of Bottom Pressure and Temperature. J. Phys. Oceanogr. 5(1), 63–74.

  • Soloviev, S.L., Popov, I., Miller, G.P., and Harvey, R.R. (1976), Preliminary Results of the First Soviet-American Tsunami Expedition. Hawaii Institute of Geophysics, NOAA-Y -TRE-162, HIS-76-8, 74 p.

  • Torrence, C., and Compo, G.P. (1998), A Practical Guide to Wavelet Analysis. Bull. Amer. Meteor. Soc. 79, 61–78.

  • UNESCO (1975), An intercomparison of open sea tidal pressure sensors. Techn. Papers in Marine Sciences, No. 21, 67 pp.

  • Vitousek, M.J., and G. Miller, G. (1970), An instrumentation system for measuring tsunamis in the deep ocean, In Tsunamis in the Pacific Ocean, (ed. W.M. Adams), East-West Center Press, Honolulu, HI, 1970, Ch. 16, pp 239–252.

  • Warren, B.A., and Wunsch, C. (1981), Evolution of Physical Oceanography. The MIT Press, 623 p.

  • Webb, S.C. (1998), Broadband seismology and noise under the ocean. Rev. of Geophys., 36 (1), 105–142.

  • Webb, S.C., Zhang, X., and Crawford, W. (1991), Infragravity waves in the deep ocean. J. Geophys. Res. 9 (6), 2723–2736.

  • Yefimov, V.V., Kulikov, Y.A., Rabinovich, A.B., and Fine I.V. (1985), Ocean Waves in Boundary Regions. Gidrometeoizdat, Leningrad (in Russian), 280 p.

Download references

Acknowledgments

The authors wish to acknowledge the partner agencies whose continued collaboration ensures the success of the United States' efforts to provide real-time tsunami warning to coastal communities during a tsunami event. NOAA’s two Tsunami Warning Centers, the National Ocean Service, the National Data Buoy Center, the Pacific Marine Environmental Laboratory, and the National Geophysical Data Center each provide critical expertise. We also thank Paul Whitmore with NOAA WC/ATWC and all anonymous reviewers for their thorough evaluation and constructive recommendations, all of which served to improve this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George Mungov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mungov, G., Eblé, M. & Bouchard, R. DART® Tsunameter Retrospective and Real-Time Data: A Reflection on 10 Years of Processing in Support of Tsunami Research and Operations. Pure Appl. Geophys. 170, 1369–1384 (2013). https://doi.org/10.1007/s00024-012-0477-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-012-0477-5

Keywords

Navigation