Skip to main content
Log in

Incompressible Euler Equations and the Effect of Changes at a Distance

  • Published:
Journal of Mathematical Fluid Mechanics Aims and scope Submit manuscript

Abstract

Because pressure is determined globally for the incompressible Euler equations, a localized change to the initial velocity will have an immediate effect throughout space. For solutions to be physically meaningful, one would expect such effects to decrease with distance from the localized change, giving the solutions a type of stability. Indeed, this is the case for solutions having spatial decay, as can be easily shown. We consider the more difficult case of solutions lacking spatial decay, and show that such stability still holds, albeit in a somewhat weaker form.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ambrose, D., Kelliher, J., Lopes Filho, M., Nussenzveig Lopes, H.: Serfati solutions to the 2D Euler equations on exterior domains. J. Differ. Equ. 259(9), 4509–4560 (2015)

  2. Bony J.-M.: Calcul symbolique et propagation des singularités pour les équations aux dérivés partielles non linéaires. Ann. Sci. Ecole Norm. Sup. (4) 14(2), 209–246 (1981)

    MathSciNet  MATH  Google Scholar 

  3. Chemin J.-Y.: Perfect incompressible fluids, Oxford lecture series in mathematics and its applications, vol 14. Clarendon Press, Oxford (1988)

    Google Scholar 

  4. Chemin, J.-Y.: Une facette mathématique de la mécanique des fluides. Ecole Polytechnique (1993, Preprint)

  5. Chemin J.-Y., Lerner N.: Flot de champs de vecteurs non lipschitziens et équations de Navier-Stokes. J. Differ. Equ. 121(2), 314–328 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  6. Cozzi E.: A finite time result for vanishing viscosity in the plane with nondecaying vorticity. Commun. Math. Sci. 8(4), 851–862 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cozzi E.: Solutions to the 2D Euler equations with velocity unbounded at infinity. J. Math. Anal. App. 423(1), 144–161 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  8. Gallay, T.: Infinite energy solutions of the two-dimensional Navier-Stokes equations. Ann. Fac. Sci. Toulouse. (2014). (arXiv:1411.5156)

  9. Gunther, N.: On the motion of fluid in a moving container. Izvestia Akad. Nauk USSR, Ser. Fiz. Mat. 20:1323–1348, 1503–1532 (1927)

  10. Gunther, N.: On the motion of fluid in a moving container. Izvestia Akad. Nauk USSR, Ser. Fiz. Mat. 21:521–526, 735–756 (1927)

  11. Gunther N.: On the motion of fluid in a moving container. Izvestia Akad Nauk USSR, Ser. Fiz. Mat. 22, 9–30 (1928)

    Google Scholar 

  12. Kato T.: Nonstationary flows of viscous and ideal fluids in \({{\mathbb R}^{3}}\). J. Funct. Anal. 9, 296–305 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kelliher, J.: A characterization at infinity of bounded vorticity, bounded velocity solutions to the 2D Euler equations. Indiana Univ. Math. J. 64(6), 1643–1666 (2015)

  14. Lichtenstein L.: Über einige Existenzprobleme der Hydrodynamik. Zweite Abhandlung. Nichthomogene, unzusammendrückbare, reibungslose Flüssigkeiten. Math. Z. 26(1), 196–323 (1927)

    Article  MathSciNet  MATH  Google Scholar 

  15. Lichtenstein L.: Über einige Existenzprobleme der Hydrodynamik. III. Permanente Bewegungen einer homogenen, inkompressiblen, zähen Flüssigkeit. Math. Z. 28, 387–415 (1928)

    Article  MathSciNet  MATH  Google Scholar 

  16. Lichtenstein L.: Über einige Existenzprobleme der Hydrodynamik. IV. Stetigkeitssätze. Eine Begründung der Helmholtz-Kirchhoffschen Theorie geradliniger Wirbelfäden. Math. Z. 32(1), 608–640 (1930)

    Article  MathSciNet  MATH  Google Scholar 

  17. Majda A.: Vorticity and the mathematical theory of incompressible fluid flow. Commun. Pure Appl. Math. 39, 187–220 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  18. Marchioro C., Pulvirenti M.: Mathematical theory of incompressible nonviscous fluids. Springer-Verlag, New York (1994)

    Book  MATH  Google Scholar 

  19. Serfati P.: Solutions \({C^{\infty}}\) en temps, n-log lipschitz bornées en espace et équation d’Euler. C. R. Acad Sci. Paris 320 I, 555–558 (1995)

    MathSciNet  Google Scholar 

  20. Taniuchi Y.: Uniformly local \({L^p}\) estimates for 2-D vorticity equation and its application to Euler equations with initial vorticity in \({bmo}\). Commun. Math. Phys. 248(1), 169–186 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Taniuchi Y., Tashiro T., Yoneda T.: On the two-dimensional Euler equations with spatially almost periodic initial data. J. Math. Fluid Mech. 12(4), 594–612 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Vishik M.: Incompressible flows of an ideal fluid with vorticity in borderline spaces of Besov type. Ann. Sci. Ecole Norm. Sup. (4) 32(6), 769–812 (1999)

    MathSciNet  MATH  Google Scholar 

  23. Ward J.P., Chaudhury K.N., Unser M.: Decay properties of Riesz transforms and steerable wavelets. SIAM J. Imaging Sci. 6, 984–998 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  24. Yudovich V.: Nonstationary flows of an ideal incompressible fluid. Zhurnal Vych Matematika. 3, 1032–1066 (1963)

    Google Scholar 

  25. Yudovich V.: Uniqueness theorem for the basic non stationary problem in the dynamics of an ideal incompressible fluid. Math. Res. Lett. 2(1), 27–38 (1995)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elaine Cozzi.

Additional information

Communicated by R. Shvydkoy

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cozzi, E., Kelliher, J.P. Incompressible Euler Equations and the Effect of Changes at a Distance. J. Math. Fluid Mech. 18, 765–781 (2016). https://doi.org/10.1007/s00021-016-0268-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00021-016-0268-3

Mathematics Subject Classification

Keywords

Navigation