Skip to main content
Log in

On an Inviscid Model for Incompressible Two-Phase Flows with Nonlocal Interaction

  • Published:
Journal of Mathematical Fluid Mechanics Aims and scope Submit manuscript

Abstract

We consider a diffuse interface model which describes the motion of an ideal incompressible mixture of two immiscible fluids with nonlocal interaction in two-dimensional bounded domains. This model consists of the Euler equation coupled with a convective nonlocal Cahn-Hilliard equation. We establish the existence of globally defined weak solutions as well as well-posedness results for strong/classical solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abels H.: On a diffusive interface model for two-phase flows of viscous, incompressible fluids with matched densities. Arch. Ration. Mech. Anal. 194, 463–506 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  2. Abels, H.: Longtime behavior of solutions of a Navier-Stokes/Cahn-Hilliard system. In: Proceedings of the Conference “Nonlocal and Abstract Parabolic Equations and their Applications, vol. 29, pp. 9–19. Bedlewo, Banach Center Publ.” (2009)

  3. Bourguignon J.P., Brezis H.: Remarks on the Euler equation. J. Funct. Anal. 15, 341–363 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bates P.W., Han J.: The Neumann boundary problem for a nonlocal Cahn-Hilliard equation. J. Differ. Equ. 212, 235–277 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Boyer F.: Mathematical study of multi-phase flow under shear through order parameter formulation. Asymptotic Anal. 20, 175–212 (1999)

    MathSciNet  MATH  Google Scholar 

  6. Bardos, C., Titi, E.: Mathematics and turbulence: where do we stand? J. Turbul. 14, (2013). doi:10.1080/14685248.2013.771838

  7. Cao C., Gal C.G.: Global solutions for the 2D NS-CH model for a two-phase flow of viscous, incompressible fluids with mixed partial viscosity and mobility. Nonlinearity 25, 3211–3234 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  8. Colli P., Frigeri S., Grasselli M.: Global existence of weak solutions to a nonlocal Cahn-Hilliard-Navier-Stokes system. J. Math. Anal. Appl. 386, 428–444 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  9. Frigeri S., Grasselli M.: Global and trajectories attractors for a nonlocal Cahn-Hilliard-Navier-Stokes system. J. Dyn. Differ. Equ. 24, 827–856 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  10. Frigeri S., Grasselli M.: Nonlocal Cahn-Hilliard-Navier-Stokes systems with singular potentials. Dyn. Partial Differ. Equ. 9, 273–304 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  11. Frigeri, S., Gal, C.G., Grasselli, M.: On nonlocal Cahn-Hilliard-Navier-Stokes systems in two dimensions. J. Nonlinear Sci. arXiv:1401.7954v2

  12. Frigeri S., Grasselli M., Krejčí P.: Strong solutions for two-dimensional nonlocal Cahn-Hilliard-Navier-Stokes systems. J. Differ. Equ. 255, 2597–2614 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Frigeri S., Grasselli M., Rocca E.: A diffuse interface model for two-phase incompressible flows with nonlocal interactions and nonconstant mobility. Nonlinearity 28, 1257–1293 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Gal C.G., Grasselli M.: Asymptotic behavior of a Cahn-Hilliard-Navier-Stokes system in 2D. Ann. Inst. H. Poincaré Anal. Non Linéaire 27, 401–436 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Gal C.G., Grasselli M.: Trajectory attractors for binary fluid mixtures in 3D. Chin. Ann. Math. Ser. B 31, 655–678 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  16. Gal C.G., Grasselli M.: Instability of two-phase flows: a lower bound on the dimension of the global attractor of the Cahn-Hilliard-Navier-Stokes system. Phys. D 240, 629–635 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  17. Gal C.G., Grasselli M.: Longtime behavior of nonlocal Cahn-Hilliard equations. Discrete Contin. Dyn. Syst. Ser. A 34, 145–179 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  18. Gal C.G., Medjo T.T.: Regularized family of models for incompressible Cahn-Hilliard two-phase flows. Nonlinear Anal. Real World Appl. 23, 94–122 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  19. Gal C.G., Medjo T.T.: On a regularized family of models for homogeneous incompressible two-phase flows. J. Nonlinear Sci. 24(6), 1033–1103 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Gajewski H., Zacharias K.: On a nonlocal phase separation model. J. Math. Anal. Appl. 286, 11–31 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  21. Giacomin G., Lebowitz J.L.: Exact macroscopic description of phase segregation in model alloys with long range interactions. Phys. Rev. Lett. 76, 1094–1097 (1996)

    Article  ADS  Google Scholar 

  22. Giacomin G., Lebowitz J.L.: Phase segregation dynamics in particle systems with long range interactions. I. Macroscopic limits. J. Stat. Phys. 87, 37–61 (1997)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Liu C., Shen J.: A phase field model for the mixture of two incompressible fluids and its approximation by a Fourier spectral method. Phys. D 179, 211–228 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  24. Londen S.-O., Petzeltová H.: Convergence of solutions of a non-local phase-field system. Discrete Contin. Dyn. Syst. Ser. S 4, 653–670 (2011)

    MathSciNet  MATH  Google Scholar 

  25. Londen S.-O., Petzeltová H.: Regularity and separation from potential barriers for a non-local phase-field system. J. Math. Anal. Appl. 379, 724–735 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  26. Kim J.S.: Phase-field models for multi-component fluid flows. Commun. Comput. Phys. 12, 613–661 (2012)

    Article  MathSciNet  Google Scholar 

  27. Starovoitov V.N.: The dynamics of a two-component fluid in the presence of capillary forces. Math. Notes 62, 244–254 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  28. Zhao L., Wu H., Huang H.: Convergence to equilibrium for a phase-field model for the mixture of two viscous incompressible fluids. Commun. Math. Sci. 7, 939–962 (2009)

    MathSciNet  MATH  Google Scholar 

  29. Yudovich V.I.: Uniqueness theorem for the basic nonstationary problem in the dynamics of an ideal incompressible fluid. Math. Res. Lett. 2(1), 27–38 (1995)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ciprian G. Gal.

Additional information

Communicated by Eduard Feireisl

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gal, C.G. On an Inviscid Model for Incompressible Two-Phase Flows with Nonlocal Interaction. J. Math. Fluid Mech. 18, 659–677 (2016). https://doi.org/10.1007/s00021-016-0252-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00021-016-0252-y

Mathematics Subject Classification

Keywords

Navigation