Skip to main content
Log in

Analysis of a Regularized Bingham Model with Pressure-Dependent Yield Stress

  • Published:
Journal of Mathematical Fluid Mechanics Aims and scope Submit manuscript

Abstract

The goal of this article is to provide some essential results for the solution of a regularized viscoplastic frictional flow model adapted from the extensive mathematical analysis of the Bingham model. The Bingham model is a standard for the description of viscoplastic flows and it is widely used in many application areas. However, wet granular viscoplastic flows necessitate the introduction of additional non-linearities and coupling between velocity and stress fields. This article proposes a step toward a frictional coupling, characterized by a dependence of the yield stress to the pressure field. A regularized version of this viscoplastic frictional model is analysed in the framework of stationary flows. Existence, uniqueness and regularity are investigated, as well as finite-dimensional and algorithmic approximations. It is shown that the model can be solved and approximated as far as a frictional parameter is small enough. Getting similar results for the non-regularized model remains an issue. Numerical investigations are postponed to further works.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ionescu I.R.: Viscoplastic shallow flow equations with topography. J. Non-Newtonian Fluid Mech. 193, 116–128 (2013)

    Article  Google Scholar 

  2. Chauchat J., Médale M.: A three-dimensional numerical model for dense granular flows based on the \({\mu(I)}\) rheology. J. Comput. Phys. 256, 696–712 (2014)

    Article  MathSciNet  ADS  Google Scholar 

  3. Mosolov P.P., Miasnikov V.P.: Variational methods in the theory of the fluidity of a viscous-plastic medium. J. Appl. Math. Mech. 29(3), 545–577 (1965)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bingham, E.C.: Fluidity and Plasticity. pp. 219 McGraw-Hill, New York (1922)

  5. Drucker D.C., Prager W.: Soil mechanics and plastic analysis for limit design. Q. Appl. Math. 10(2), 157–165 (1952)

    MATH  MathSciNet  Google Scholar 

  6. El-Khouja, N.: Une première approche de la modélisation numérique des écoulements viscoplastiques frictionnels, PhD thesis. Université de Nantes Angers Le Mans (2013)

  7. Reddy B.D.: Mixed variational inequalities arising in elastoplasticity. Nonlinear Anal. Theory Methods Appl. 19, 1071–1089 (1992)

    Article  MATH  Google Scholar 

  8. Bercovier M., Engelman M.: A finite element method for incompressible non-Newtonian flows. J. Comput. Phys. 36, 313–326 (1980)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  9. Duvaut, G., Lions, J.L.: Inequalities in mechanics and physics. Grundlehren der mathematischen Wissenschaften. Springer, Berlin (1976)

  10. Serëgin G.A.: On the differentiability of local extremals of variational problems of the mechanics of rigidly viscoplastic media. Izv. Vyssh. Uchebn. Zaved. Mat. 10, 23–30 (1987)

    Google Scholar 

  11. Papanastasiou T.: Flows of materials with yield. J. Rheol. 31, 385–404 (1987)

    Article  MATH  ADS  Google Scholar 

  12. Frigaard I., Nouar C.: On the usage of viscosity regularization methods for visco-pastic fluid flow computation. J. Non-Newton. Fluid Mech. 127, 1–26 (2005)

    Article  MATH  Google Scholar 

  13. Babuska I.: Error-bounds for finite element method. Numerische Mathematik 16, 322–333 (1971)

    Article  MATH  MathSciNet  Google Scholar 

  14. Brezzi F.: On the existence, uniqueness and approximation of saddle-point problems arising from lagrangian multipliers. RAIRO Analyse Numérique 8, 129–151 (1974)

    MATH  MathSciNet  Google Scholar 

  15. Serëgin G.A.: On the differentiability of local extremals of variational problems of the mechanics of rigidly viscoplastic media. Sov. Math. (Iz. VUZ) 31, 29–38 (1987)

    MATH  Google Scholar 

  16. Ekeland, I., Temam, R.: Convex Analysis and Variational Problems. Studies in Mathematics and Its Applications. Elsevier, Amsterdam (1976)

  17. Brezzi, F., Fortin, M.: Mixed and Hybrid Finite Elements Methods. Springer Series in Computational Mathematics. Springer, Berlin (1991)

  18. Han W., Reddy B.D.: On the finite element method for mixed variational inequalities arising in elastoplasticity. SIAM J. Numer. Anal. 32, 1778–1807 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  19. Falk R.S., Mercier B.: Error estimates for elasto-plastic problems. R.A.I.R.O. 11, 135–144 (1977)

    MATH  MathSciNet  Google Scholar 

  20. Glowinski R.: sur l’approximation d’une inéquation variationnelle elliptique de type Bingham. R.A.I.R.O. Analyse Numérique 10(12), 13–30 (1976)

    MathSciNet  Google Scholar 

  21. Roquet N., Michel R., Saramito. P.: Error estimates for a viscoplastic fluid by using Pk finite elements and adaptive meshes. Comptes rendus de l’acadámie des siciences série I Mathématique 331(7), 563–568 (2000)

    MATH  MathSciNet  ADS  Google Scholar 

  22. Baranger J., Najib K., Sandri D.: Numerical analysis of a three fields model for a quasi-Newtonian flow. Comput. Methods Appl. Mech. Eng. 109, 281–292 (1993)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  23. Aposporidis A., Haber E., Olshanskii M.A., Veneziani A.: A mixed formulation of the Bingham fluid flow problem: Analysis and numerical solution. Comput. Methods Appl. Mech. Eng. 200(29), 2434–2446 (2011)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  24. Faria C.O., Karam-Filho J.: A regularized-stabilized mixed finite element formulation for viscoplasticity of Bingham type. Comput. Math. Appl. 66, 975–995 (2013)

    Article  MathSciNet  Google Scholar 

  25. Dean E.J., Glowinski R., Guidoboni G.: On the numerical Bingham visco-plastic flow: Old and new results. J. Non-Newton. Fluid Mech. 142, 36–62 (2007)

    Article  MATH  Google Scholar 

  26. de Los Reyes J.C., Andrade S.G.: Numerical simulation of two-dimensional Bingham fluid flow by semismooth Newton methods. J. Comput. Appl. Math. 235, 11–32 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  27. Kantorovich L.V.: On Newton’s method for functional equations. Dokl. Akad. Nauk. SSSR 59, 1237–1240 (1948)

    Google Scholar 

  28. Yamamoto T.: Historical developments in convergence analysis for Newton’s and Newton-like methods. J. Comput. Appl. Math. 124(1-2), 1–23 (2000)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  29. Kunisch, K.: Semi-smooth Newton Methods for Non-differentiable Optimization Problems. Lipschitz Lectures. http://math.uni-graz.at/kunisch/papers/lipschitzlectureskunisch.pdf (2008)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas Roquet.

Additional information

Communicated by R. Glowinski

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El Khouja, N., Roquet, N. & Cazacliu, B. Analysis of a Regularized Bingham Model with Pressure-Dependent Yield Stress. J. Math. Fluid Mech. 17, 723–739 (2015). https://doi.org/10.1007/s00021-015-0230-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00021-015-0230-9

Mathematics Subject Classification

Keywords

Navigation