Skip to main content
Log in

On the Smoothing Effect in the Kinematic Dynamo Equations in Critical Spaces

  • Published:
Journal of Mathematical Fluid Mechanics Aims and scope Submit manuscript

Abstract

We study the smoothing effects of diffusion in a 3D vector system of linear advection-diffusion PDEs known as the kinematic dynamo equations. We examine the case where both the divergence free drift velocity \({\mathbf{u}(x,t)}\) and the mild solution \({\mathbf{B}(x,t)}\) to the PDE obey the natural scaling of the equation. We consider initial data \({\mathbf{B}_0(x) \in L^3(\mathbb{R}^3)}\) and demonstrate how the regularization effects of diffusion are influenced by the profile of \({\mathbf{u}(x,t)}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arnold, V.I.: Several remarks on antidynamo-theorem, Vestnik Moscow State Univ., (6), 50–56 (1982)

  2. Bayly B.: Fast magnetic dynamos in chaotic flows. Phys. Rev. Lett 57(22), 2800 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  3. Childress S., Soward A.M.: Convection-driven hydromagnetic dynamo. Phys. Rev. 29, 837–839 (1972)

    ADS  Google Scholar 

  4. Dong H., Du D.: On the local smoothness of solutions of the Navier–Stokes equations. J. Math. Fluid Mech. 9(2), 139–152 (2007)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  5. Favier B., Proctor M.R.E.: Kinematic dynamo action in square and hexagonal patterns. Phys. Rev. E 88, 053011 (2013)

    Article  ADS  Google Scholar 

  6. Friedlander S., Suen A.: Hölder continuity of solutions to the kinematic dynamo equations. J. Math. Fluid Mech. 16(4), 691–700 (2014)

    Article  MathSciNet  Google Scholar 

  7. Friedlander S., Vicol V.: Global well-posedness for an advection-diffusion equation arising in magnetogeostrophic dynamics. Ann. Inst. H. Poincaré Anal. Non Linéaire 28(2), 283–301 (2011)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  8. Friedlander, S., Vishik, M.M.: Dynamo theory, vorticity generation, and exponential stretching, Chaos 1l198–205 (1991)

  9. Jones C.A., Roberts P.H.: Convection-driven dynamos in a rotating plane layer. J. Fluid Mech. 404, 311–343 (2000)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  10. Kato T.: Strong L p-solutions of the Navier Stokes equation in \({\mathbb{R}^{m}}\) with applications to weak solutions. Math. Z. 187, 471–480 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  11. Ladyzhenskaya, O.A., Solonnikov, V.A., Ural’tseva, N.N.: Linear and quasilinear equations of parabolic type. American Mathematical Society, translations of mathematical monographs, vol. 23. American Mathematical Society (1968)

  12. Lemarie-Rieusset, P.G.: Recent Developments in Navier–Stokes Equations, Chapman & Hall/CRC Research Notes in Mathematics Series, (2002)

  13. Moffatt H.K.: Magnetic Field Generation in Electrically Conducting Fluids. Cambridge U.P., Cambridge (1978)

    Google Scholar 

  14. Ponty Y., Gilbert A.D., Soward A.M.: Kinematic dynamo action in large magnetic Reynolds number flows driven by shear and convection. J. Fluid Mech. 435, 261–287 (2001)

    Article  ADS  MATH  Google Scholar 

  15. Seregin G., Silvestre L., Sverak V., Zlatos A.: On divergence-free drifts. J. Differ. Equ. 252(1), 505–540 (2012)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  16. Soward A., Childress S.: Analytic theory of dynamos. Adv. Space Res. 6(8), 7 (1986)

    Article  ADS  Google Scholar 

  17. Silvestre L., Vicol V.: Hölder continuity for a drift-diffusion equation with pressure. Ann. de l’Inst. Henri Poincaré (C) Anal. Non Linéaire 29(4), 637–652 (2012)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  18. Taylor M.E.: Partial Differential Equations: Basic Theory, Texts in Applied Mathematics. Springer, New York (1999)

    Google Scholar 

  19. Vishik M.M.: Magnetic field generation by the motion of a highly conducting fluid. Geophys. Astrophys. Fluid Dyn. 48, 151–167 (1989)

    Article  ADS  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susan Friedlander.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Friedlander, S., Rusin, W. On the Smoothing Effect in the Kinematic Dynamo Equations in Critical Spaces. J. Math. Fluid Mech. 17, 145–153 (2015). https://doi.org/10.1007/s00021-014-0199-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00021-014-0199-9

Keywords

Navigation