Skip to main content
Log in

Nonlinear Stability of Convection in a Porous Layer with Solid Partitions

  • Published:
Journal of Mathematical Fluid Mechanics Aims and scope Submit manuscript

Abstract

We show that for many classes of convection problem involving a porous layer, or layers, interleaved with finite but non-deformable solid layers, the global nonlinear stability threshold is exactly the same as the linear instability one. The layer(s) of porous material may be of Darcy type, Brinkman type, possess an anisotropic permeability, or even be such that they are of local thermal non-equilibrium type where the fluid and solid matrix constituting the porous material may have different temperatures. The key to the global stability result lies in proving the linear operator attached to the convection problem is a symmetric operator while the nonlinear terms must satisfy appropriate conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Altawallbeh A.A., Bhadauria B.S., Hashim I.: Linear and nonlinear double—diffusive convection in a saturated anisotropic porous layer with Soret effect and internal heat source. Int. J. Heat Mass Transf. 59, 103–111 (2013)

    Article  Google Scholar 

  2. Banu N., Rees D.A.S.: Onset of Darcy—Bénard convection using a thermal non-equilibrium model. Int. J. Heat Mass Transf. 45, 2221–2228 (2002)

    Article  MATH  Google Scholar 

  3. Böttger P.H.M., Gusarov A.V., Shklover V., Patscheider J., Sobiech M.: Anisotropic layered media with microintrusions; thermal properties of arc—evaporation multilayer metal nitrides. Int. J. Thermal Sci. 77, 75–83 (2014)

    Article  Google Scholar 

  4. Capone F., Gentile M., Hill A.A.: Penetrative convection in anisotropic porous media with variable permeability. Acta Mechanica 216, 49–58 (2011)

    Article  MATH  Google Scholar 

  5. Capone F., Gentile M., Hill A.A.: Double diffusive penetrative convection simulated via internal heating in an anisotropic porous layer with throughflow. Int. J. Heat Mass Transf. 54, 1622–1626 (2011)

    Article  MATH  Google Scholar 

  6. Capone F., de Cataldis V., de Luca R., Torcicollo I.: On the stability of vertical constant throughflows for binary mixtures in porous layers. Int. J. Non-Linear Mech. 59, 1–8 (2014)

    Article  ADS  Google Scholar 

  7. Capone F., Rionero S.: Inertia effect on the onset of convection in rotating porous layers via the “auxilliary system method”. Int. J. Non-Linear Mech. 57, 192–200 (2013)

    Article  ADS  Google Scholar 

  8. Dongarra J.J., Straughan B., Walker D.W.: Chebyshev tau—QZ algorithm methods for calculating spectra of hydrodynamic stability problems. Appl. Numer. Math. 22, 399–435 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  9. Egorov S.D.: Thermal convection in sections of multilayer cryogenic heat insulation. J. Eng. Phys. Thermophys. 61, 989–992 (1991)

    Article  Google Scholar 

  10. Falsaperla P., Giacobbe A., Mulone G.: Does symmetry of the operator of a dynamical system help stability?. Acta Appl. Math. 122, 239–253 (2012)

    MathSciNet  MATH  Google Scholar 

  11. Galdi G.P., Padula M.: A new approach to energy theory in the stability of fluid motion. Arch. Ration. Mech. Anal. 110, 187–286 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  12. Galdi, G.P., Rionero, S.: Weighted energy methods in fluid dynamics and elasticity. In: Springer Lecture Notes in Mathematics, vol. 1134 (1985)

  13. Galdi G.P., Straughan B.: Exchange of stabilities, symmetry and nonlinear stability. Arch. Ration. Mech. Anal. 89, 211–228 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  14. Georgescu A., Palese L.: Extension of Joseph’s criterion to the nonlinear stability of mechanical equilibria in the presence of thermodiffusive conductivity. Theor. Comput. Fluid Mech. 8, 403–413 (1996)

    MATH  ADS  Google Scholar 

  15. Hill A.A., Malashetty M.S.: An operative method to obtain sharp nonlinear stability for systems with spatially dependent coefficients. Proc. R. Soc. Lond. A 468, 323–336 (2012)

    Article  MathSciNet  ADS  Google Scholar 

  16. Jordan P.M., Puri P.: Thermal stresses in a spherical shell under three thermoelastic models. J. Thermal Stresses 24, 47–70 (2001)

    Article  Google Scholar 

  17. Kumar A., Bhadauria B.S.: Thermal instability in a rotating anisotropic porous layer saturated by a viscoelastic fluid. Int. J. Non-Linear Mech. 46, 47–56 (2011)

    Article  ADS  Google Scholar 

  18. Lombardo S., Mulone G., Trovato M.: Nonlinear stability in reaction-diffusion systems via optimal Lyapunov functions. J. Math. Anal. Appl. 342, 461–476 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  19. Malashetty M.S., Shivakumara I.S., Kulkarni S.: The onset of Lapwood–Brinkman convection using a thermal non-equilibrium model. Int. J. Heat Mass Transf. 48, 1155–1163 (2005)

    Article  MATH  Google Scholar 

  20. Malashetty M.S., Hill A.A., Swamy M.: Double diffusive convection in a viscoelastic fluid—saturated porous layer using a thermal non-equilibrium model. Acta Mechanica 223, 967–983 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  21. Nield D.A.: Comment on the effect of anisotropy on the onset of convection in a porous medium. Adv. Water Resour. 30, 696–697 (2007)

    Article  ADS  Google Scholar 

  22. Nield D.A.: A note on local thermal non-equilibrium in porous media near boundaries and interfaces. Trans. Porous Media 95, 581–584 (2012)

    Article  MathSciNet  Google Scholar 

  23. Nield D.A., Kuznetsov A.V.: Local thermal non-equilibrium effects in forced convection in a porous medium channel: a conjugate problem. Int. J. Heat Mass Transf. 42, 3245–3252 (1999)

    Article  MATH  Google Scholar 

  24. Nield D.A., Kuznetsov A.V.: The effect of local thermal non-equilibrium on the onset of convection in an nanofluid. J. Heat Transf. 132, 052405 (2010)

    Article  Google Scholar 

  25. Patil P.M., Rees D.A.S.: The onset of convection in a porous layer with multiple horizontal solid partitions. Int. J. Heat Mass Transf. 68, 234–246 (2014)

    Article  Google Scholar 

  26. Rees D.A.S.: Microscopic modelling of the two-temperature model for conduction in porous media. J. Porous Media 13, 125–143 (2010)

    Article  Google Scholar 

  27. Rees D.A.S., Bassom A.P., Siddheshwar P.G.: Local thermal non-equilibrium effects arising from the injection of a hot fluid into a porous medium. J. Fluid Mech. 594, 379–398 (2008)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  28. Rees D.A.S., Genc G.: The onset of convection in porous layers with multiple horizontal partitions. Int. J. Heat Mass Transf. 54, 3081–3089 (2011)

    Article  MATH  Google Scholar 

  29. Rionero S.: Onset of convection in porous materials with vertically stratfied porosity. Acta Mechanica 222, 261–272 (2011)

    Article  MATH  Google Scholar 

  30. Rionero, S.: Multicomponent diffusive—convective fluid motions in porous layers: Ultimately boundedness, absence of subcritical instabilities, and global stability for any number of salts. Phys. Fluids 25 (2013), Article Number 054104

  31. Saravan S., Brindha D.: Linear and nonlinear stability limits for centrifugal convection in an anisotropic layer. Int. J. Non-Linear Mech. 46, 65–72 (2011)

    Article  ADS  Google Scholar 

  32. Saravan S., Brindha D.: Onset of centrifugal filtration convection: departure from thermal equilibrium. Proc. R. Soc. Lond. A 469, 20120655 (2013)

    Article  ADS  Google Scholar 

  33. Saravan S., Sivakumar T.: Onset of thermovibrational filtration convection: departure from thermal equilibrium. Phys. Rev. E 84, 026307 (2011)

    Article  ADS  Google Scholar 

  34. Scott N.L., Straughan B.: A nonlinear stability analysis of convection in a porous vertical channel including local thermal nonequilibrium. J. Math. Fluid Mech. 15, 171–178 (2013)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  35. Shiina Y., Hishida M.: Critical Rayleigh number of natural convection in high porosity anisotropic horizontal porous layers. Int. J. Heat Mass Transf. 53, 1507–1513 (2010)

    Article  MATH  Google Scholar 

  36. Shivakumara I.S., Lee J., Chavaraddi K.B.: Onset of surface tension driven convection in a fluid overlying a layer of an anisotropic porous medium. Int. J. Heat Mass Transf. 54, 994–1001 (2011)

    Article  MATH  Google Scholar 

  37. Straughan, B.: The energy method, stability, and nonlinear convection. Ser. Appl. Math. Sci., vol. 91, 2nd edn. Springer, New York (2004)

  38. Straughan B.: Global nonlinear stability in porous convection with a thermal non-equilibrium model. Proc. R. Soc. Lond. A 462, 409–418 (2006)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  39. Straughan, B.: Stability and wave motion in porous media. Ser. Appl. Math. Sci., vol. 165. Springer, New York (2008)

  40. Straughan B.: Green-Naghdi fluid with non-thermal equilibrium effects. Proc. R. Soc. Lond. A 466, 2021–2032 (2010)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  41. Straughan B.: Porous convection with local thermal non-equilibrium effects and Cattaneo effects in the solid. Proc. R. Soc. Lond. A 469, 20130187 (2013)

    Article  MathSciNet  ADS  Google Scholar 

  42. Straughan B.: Anisotropic inertia effect in microfluidic porous thermosolutal convection. Microfluidics Nanofluidics 16, 361–368 (2014)

    Article  Google Scholar 

  43. Straughan B., Walker D.W.: Anisotropic porous penetrative convection. Proc. R. Soc. Lond. A 452, 97–115 (1996)

    Article  MATH  ADS  Google Scholar 

  44. Tiwari A.K., Singh A.K., Chandran P., Sacheti N.C.: Natural convection in a cavity with a sloping upper surface filled with an anisotropic porous material. Acta Mechanica 223, 95–108 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  45. Vadasz P.: Small Nield number convection in a porous layer heated from below via a constant heat flux and subject to lack of local thermal equilibrium. J. Porous Media 15, 249–258 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Straughan.

Additional information

Communicated by G.P. Galdi

Research supported by a “Tipping Points, Mathematics, Metaphors and Meanings” grant of the Leverhulme Trust. I am indebted to an anonymous referee for helpful criticism.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Straughan, B. Nonlinear Stability of Convection in a Porous Layer with Solid Partitions. J. Math. Fluid Mech. 16, 727–736 (2014). https://doi.org/10.1007/s00021-014-0183-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00021-014-0183-4

Keywords

Navigation