Skip to main content
Log in

Instability of Equatorial Water Waves with an Underlying Current

  • Published:
Journal of Mathematical Fluid Mechanics Aims and scope Submit manuscript

Abstract

In this paper we use the short-wavelength instability approach to derive an instability threshold for exact trapped equatorial waves propagating eastwards in the presence of an underlying current.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bayly, B.J.: Three-dimensional instabilities in quasi-two dimensional inviscid flows. In: Miksad, R.W., et al. (eds) Nonlinear Wave Interactions in Fluids, pp. 71–77. ASME, New York (1987)

  2. Bennett A.: Lagrangian fluid dynamics. Cambridge University Press, Cambridge (2006)

    Book  MATH  Google Scholar 

  3. Constantin A.: On the deep water wave motion. J. Phys. A 34, 1405–1417 (2001)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  4. Constantin A.: Edge waves along a sloping beach. J. Phys. A 34, 9723–9731 (2001)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  5. Constantin A.: The trajectories of particles in Stokes waves. Invent. Math. 166, 523–535 (2006)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  6. Constantin, A.: Nonlinear water waves with applications to wave-current interactions and Tsunamis. In: CBMS-NSF Conference Series in Applied Mathematics, vol. 81. SIAM, Philadelphia (2011)

  7. Constantin A.: An exact solution for equatorially trapped waves. J. Geophys. Res. Oceans 117, C05029 (2012)

    Article  ADS  Google Scholar 

  8. Constantin A.: On the modelling of equatorial waves. Geophys. Res. Lett. 39, L05602 (2012)

    Article  ADS  Google Scholar 

  9. Constantin A.: Some three-dimensional nonlinear equatorial flows. J. Phys. Oceanogr. 43, 165–175 (2013)

    Article  ADS  Google Scholar 

  10. Constantin A.: On equatorial wind waves. Differ. Integral Equ. 26, 237–252 (2013)

    MathSciNet  MATH  Google Scholar 

  11. Constantin A.: Some nonlinear, equatorially trapped, nonhydrostatic internal geophysical waves. J. Phys. Oceanogr. 44, 781–789 (2014)

    Article  Google Scholar 

  12. Constantin A., Escher J.: Symmetry of steady deep-water waves with vorticity. Eur. J. Appl. Math. 15, 755–768 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  13. Constantin A., Germain P.: Instability of some equatorially trapped waves. J. Geophys. Res. Oceans 118, 2802–2810 (2013)

    Article  ADS  Google Scholar 

  14. Constantin A., Strauss W.: Pressure beneath a Stokes wave. Comm. Pure Appl. Math. 63, 533–557 (2010)

    MathSciNet  MATH  Google Scholar 

  15. Cushman-Roisin, B., Beckers, J.-M.: Introduction to geophysical fluid dynamics: physical and numerical aspects. Academic, Waltham (2011)

  16. Drazin P.G.: Introduction to hydrodynamic stability. Cambridge University Press, Cambridge (2002)

    Book  MATH  Google Scholar 

  17. Drazin P.G., Reid W.H.: Hydrodynamic stability. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  18. Fedorov A.V., Brown J.N.: Equatorial waves. In: Steele, J. (eds) Encyclopedia of Ocean Sciences., pp. 3679–3695. Academic Press, San Diego (2009)

    Google Scholar 

  19. Friedlander S., Vishik M.M.: Instability criteria for the flow of an inviscid incompressible fluid. Phys .Rev. Lett. 66, 2204–2206 (1991)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  20. Friedlander S., Yudovich V.: Instabilities in fluid motion. Not. Am. Math. Soc. 46, 1358–1367 (1999)

    MathSciNet  MATH  Google Scholar 

  21. Friedlander, S.: Lectures on stability and instability of an ideal fluid. In: Hyperbolic equations and frequency interactions, IAS/Park City Mathematics Series, vol. 5, pp. 227–304. American Mathematical Social, Providence, RI (1999)

  22. Gallagher I., Saint-Raymond L.: On the influence of the Earth’s rotation on geophysical flows. In: Friedlander, S., Serre, D. (eds.) Handbook of Mathematical Fluid Mechanics, vol. 4., pp. 201–329. North-Holland, Amsterdam (2007)

    Google Scholar 

  23. Gerstner F.: Theorie der Wellen samt einer daraus abgeleiteten Theorie der Deichprofile. Ann. Phys. 2, 412–445 (1809)

    Article  Google Scholar 

  24. Henry, D.: On the deep-water Stokes flow. Int. Math. Res. Not. 7 (2008)

  25. Henry D.: On Gerstner’s water wave. J. Nonlinear Math. Phys. 15, 87–95 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  26. Henry D.: An exact solution for equatorial geophysical water waves with an underlying current. Eur. J. Mech. B Fluids 38, 18–21 (2013)

    Article  MathSciNet  ADS  Google Scholar 

  27. Henry D., Matioc A.: On the existence of equatorial wind waves. Nonlinear Anal. 101, 113–123 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  28. Ionescu-Kruse D.: Particle trajectories in linearized irrotational shallow water flows. J. Nonlinear Math. Phys. 15, 13–27 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  29. Ionescu-Kruse, D.: Instability of edge waves along a sloping beach. J. Diff. Equ. doi:10.1016/j.jde.2014.03.009

  30. Izumo T.: The equatorial current, meridional overturning circulation, and their roles in mass and heat exchanges during the El Niño events in the tropical Pacific Ocean. Ocean Dyn. 55, 110–123 (2005)

    Article  ADS  Google Scholar 

  31. Leblanc S.: Local stability of Gerstner’s waves. J. Fluid Mech. 506, 245–254 (2004)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  32. Lifschitz A., Hameiri E.: Local stability conditions in fluid dynamics. Phys. Fluids 3, 2644–2651 (1991)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  33. Matioc A.V.: An exact solution for geophysical equatorial edge waves over a sloping beach. J. Phys. A 45, 365501 (2012)

    Article  MathSciNet  Google Scholar 

  34. Mollo-Christensen E.: Gravitational and geostrophic billows: some exact solutions. J. Atmos. Sci. 35, 1395–1398 (1978)

    Article  ADS  Google Scholar 

  35. Stuhlmeier R.: On edge waves in stratified water along a sloping beach. J. Nonlinear Math. Phys. 18, 127–137 (2011)

    Article  MathSciNet  MATH  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to François Genoud.

Additional information

Communicated by A. Constantin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Genoud, F., Henry, D. Instability of Equatorial Water Waves with an Underlying Current. J. Math. Fluid Mech. 16, 661–667 (2014). https://doi.org/10.1007/s00021-014-0175-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00021-014-0175-4

Mathematics Subject Classification (2010)

Keywords

Navigation