Skip to main content
Log in

Some Automatic Continuity Theorems for Operator Algebras and Centralizers of Pedersen’s Ideal

  • Published:
Integral Equations and Operator Theory Aims and scope Submit manuscript

Abstract

We prove automatic continuity theorems for “decomposable” or“local” linear transformations between certain natural subspaces of operator algebras. The transformations involved are not algebra homomorphisms but often are module homomorphisms. We show that all left (respectively quasi-) centralizers of the Pedersen ideal of a C*-algebra A are locally bounded if and only if A has no infinite dimensional elementary direct summand. It has previously been shown by Lazar and Taylor and Phillips that double centralizers of Pedersen’s ideal are always locally bounded.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akemann C.A.: The general Stone-Weierstrass problem. J. Funct. Anal. 4, 277–294 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  2. Akemann C.A.: Left ideal structure of C*-algebras. J. Funct. Anal. 6, 305–317 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  3. Akemann C.A.: A Gelfand representation theory for C*-algebras. Pac. J. Math. 39, 1–11 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  4. Akemann C.A., Anderson J., Pedersen G.K.: Approaching infinity in C*-algebras. J. Oper. Theory 21, 255–271 (1989)

    MathSciNet  MATH  Google Scholar 

  5. Akemann C.A., Pedersen G.K., Tomiyama J.: Multipliers of C*-algebras. J. Funct. Anal. 13, 277–301 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bratteli O., Elliott G.A., Evans D.E.: Locality and differential operators on C*-algebras. J. Diff. Eqs. 64, 221–273 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  7. Brown, L.G.: Close hereditary C*-subalgebras and the structure of quasi-multipliers. Proc. Royal Soc. Edinb (to appear)

  8. Brown L.G.: Semicontinuity and multipliers of C*-algebras. Canad. J. Math. 40, 865–988 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  9. Brown L.G.: Large C*-algebras of universally measurable operators. Q. J. Math. 65, 851–855 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  10. Brown L.G., Wong N.C.: Left quotients of C*-algebras, II: atomic parts of left quotients. J. Oper. Theory 44, 207–222 (2000)

    MathSciNet  MATH  Google Scholar 

  11. Brown L.G., Wong N.C.: Left quotients of a C*-algebra, III: operators on left quotients. Stud. Math. 218, 189–217 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  12. Busby R.C.: Double centralizers and extensions of C*-algebras. Trans. Amer. Math. Soc. 171, 195–234 (1972)

    MathSciNet  Google Scholar 

  13. Combes F.: Sur les faces d’une C*-algèbre. Bull. Sci. Math. 93, 37–62 (1969)

    MathSciNet  MATH  Google Scholar 

  14. Combes F.: Quelques propriétés des C*-algèbres. Bull. Sci. Math. 94, 165–192 (1970)

    MathSciNet  MATH  Google Scholar 

  15. Dixmier J.: ‘Les C*-algèbres et leurs représentations’. Gauthier-Villars, Paris (1964)

    MATH  Google Scholar 

  16. Effros E.G.: Order ideals in a C*-algebra and its dual. Duke Math. J. 30, 391–412 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  17. Johnson B.E.: An introduction to the theory of centralizers. Proc. Lond. Math. Soc. 14, 299–320 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kadison R.V.: Irreducible operator algebras. Proc. Nat. Acad. Sci. USA 43, 273–276 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kim, H.: Semicontinuity for unbounded operators affiliated with operator algebras. Doctoral dissertation, Purdue University (1992)

  20. Lazar, A.J., Taylor, D.C.: Multipliers of Pedersen’s ideal. Memoirs Amer. Math. Soc. 169 (1976)

  21. Luxemburg, W.A.J.: Some aspects of the theory of Riesz spaces. Univ. of Arkansas LNM 4 (1979)

  22. Neumann M., Ptak V.: Automatic continuity, local type, and causality. Stud Math. 82, 61–90 (1985)

    MathSciNet  MATH  Google Scholar 

  23. Pedersen G.K.: Applications of weak* semicontinuity in C*-algebra theory. Duke Math. J. 39, 431–450 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  24. Pedersen G.K.: ‘C*-algebras and their automorphism groups’. Academic Press, London (1979)

    MATH  Google Scholar 

  25. Peetre J.: Une caractérisation abstraite des opérateurs différentiels. Math. Scand. 7, 211–218 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  26. Peetre J.: Réctification à à l’article “Une caractérisation abstraite des opérateurs différentiels”. Math. Scand. 8, 116–120 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  27. Phillips N.C.: A new approach to the multipliers of Pedersen’s ideal. Proc. Amer. Math. Soc. 104, 861–867 (1988)

    MathSciNet  MATH  Google Scholar 

  28. The William Lowell Putnam Mathematical Competition, Problems and Solutions: 1965–1984. In: Alexanderson, G.L., Klosinski, L.F., Larson, L.C., Math. Assoc. of Amer. (1985)

  29. Wong, N.-C.: The left quotient of a C*-algebra and its representation through a continuous field of Hilbert spaces. Doctoral dissertation, Purdue University (1991)

  30. Wong N.-C.: Left quotients of a C*-algebra, I: representations via vector sections. J. Oper. Theory 32, 185–201 (1994)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lawrence G. Brown.

Additional information

This work was completed with the support of our \({t^{-1/2}}\)-pert.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brown, L.G. Some Automatic Continuity Theorems for Operator Algebras and Centralizers of Pedersen’s Ideal. Integr. Equ. Oper. Theory 86, 249–270 (2016). https://doi.org/10.1007/s00020-016-2321-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00020-016-2321-2

Mathematics Subject Classification

Keywords

Navigation