Skip to main content
Log in

Irregularity of the Szegö Projection on Bounded Pseudoconvex Domains in \({\mathbb{C}^2}\)

  • Published:
Integral Equations and Operator Theory Aims and scope Submit manuscript

Abstract

We construct bounded pseudoconvex domains in \({\mathbb{C}^2}\) for which the Szegö projection operators are unbounded on L p spaces of the boundary for all \({p\not =2}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barrett D.E.: A floating body approach to Fefferman’s hypersurface measure. Math. Scand. 98(1), 69–80 (2006)

    MATH  MathSciNet  Google Scholar 

  2. Békollé D., Bonami A.: Estimates for the Bergman and Szegő projections in two symmetric domains of C n. Colloq. Math. 68(1), 81–100 (1995)

    MATH  MathSciNet  Google Scholar 

  3. Békollé D.: Projections sur des espaces de fonctions holomorphes dans des domaines plans. Can. J. Math. 38(1), 127–157 (1986)

    Article  MATH  Google Scholar 

  4. Charpentier P., Dupain Y.: Estimates for the Bergman and Szegö projections for pseudoconvex domains of finite type with locally diagonalizable Levi form. Publ. Mat. 50(2), 413–446 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  5. Dostanić M.R.: Unboundedness of the Bergman projections on L p spaces with exponential weights. Proc. Edinb. Math. Soc. (2) 47(1), 111–117 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  6. Engliš M., Zhang G.: On a generalized Forelli-Rudin construction. Complex Var. Elliptic Equ. 51(3), 277–294 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  7. Grellier S., Peloso M.M.: Decomposition theorems for Hardy spaces on convex domains of finite type. Ill. J. Math. 46(1), 207–232 (2002)

    MATH  MathSciNet  Google Scholar 

  8. Knopf P.M.: Mapping properties of the Szegő operator for the bidisc. Indiana Univ. Math. J. 38(1), 59–74 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  9. Ligocka E.: On the Forelli–Rudin construction and weighted Bergman projections. Stud. Math. 94(3), 257–272 (1989)

    MATH  MathSciNet  Google Scholar 

  10. Lanzani L., Stein E.M.: Szegö and Bergman projections on non-smooth planar domains. J. Geom. Anal. 14(1), 63–86 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  11. Lanzani, L., Stein, E.M.: The Bergman projection in L p for domains with minimal smoothness. Ill. J. Math. 56(1), 127–154 (2013)

  12. Lanzani L., Stein E.M.: Cauchy-type integrals in several complex variables. Bull. Math. Sci. 3(2), 241–285 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  13. McNeal J.D., Stein E.M.: The Szegő projection on convex domains. Math. Z. 224(4), 519–553 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  14. Phong D.H., Stein E.M.: Estimates for the Bergman and Szegö projections on strongly pseudo-convex domains. Duke Math. J. 44(3), 695–704 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  15. Stein, E.M.: Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals. In: Princeton Mathematical Series, vol. 43. Princeton University Press, Princeton. (With the assistance of Timothy S. Murphy, Monographs in Harmonic Analysis, III 1993)

  16. Vladimirov, V.S.: Methods of the theory of functions of many complex variables. In: Ehrenpreis, L. (ed.) Translated from the Russian by Scripta Technica, Inc. The MIT Press, Cambridge (1966)

  17. Zeytuncu Y.E.: L p regularity of weighted Bergman projections. Trans. Am. Math. Soc. 365(6), 2959–2976 (2013)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunus E. Zeytuncu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Munasinghe, S., Zeytuncu, Y.E. Irregularity of the Szegö Projection on Bounded Pseudoconvex Domains in \({\mathbb{C}^2}\) . Integr. Equ. Oper. Theory 82, 417–422 (2015). https://doi.org/10.1007/s00020-015-2227-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00020-015-2227-4

Mathematics Subject Classification

Keywords

Navigation