Skip to main content
Log in

The Laplacian on Cylindrical Domains

  • Published:
Integral Equations and Operator Theory Aims and scope Submit manuscript

Abstract

The aim of this paper is to prove elliptic regularity and parabolic maximal regularity of the Laplacian with mixed boundary conditions on domains Ω carrying a cylindrical structure. More precisely, we consider Ω to be given as the Cartesian product of whole or half spaces, a cube \({\mathcal{Q}}\) , and a standard domain V having compact boundary. Taking advantage of this structure we apply operator-valued Fourier multiplier results to transfer \({\mathcal{H}^{\infty}}\) -calculus results known for the Laplacian in L p(V) to the Laplacian in L p(Ω). This approach turns out to inherit elliptic regularity, i.e. the domain of the Dirichlet Laplacian equals \({W^{2,p}(\Omega) \cap W_0^{1,p}(\Omega)}\) , for instance. This is surprising since Ω may be unbounded and non-convex with boundary neither compact nor of class C 1,1 at the same time. More generally, we consider the following mixture of boundary conditions: on every smooth part of the boundary Dirichlet or Neumann boundary conditions are imposed and on parts related to \({\mathcal{Q}}\) generalized periodic boundary conditions are included. Via \({\mathcal{R}}\) -sectoriality we deduce maximal regularity in the parabolic sense which seems to be new for this general class of boundary conditions. Parabolic equations with such a mixture of boundary conditions on such type of domains appear for example in models describing growth of biological cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amann, H.: Linear and Quasilinear Parabolic Problems, vol I. In: Monographs in Mathematics, vol 89. Birkhäuser Boston Inc., Boston (1995)

  2. Amann, H.: Vector-valued distributions and Fourier multipliers. unpublished manuscript (2003)

  3. Arendt, W.: Semigroups and evolution equations: functional calculus, regularity and kernel estimates. In: Evolutionary Equations, vol. I. Handb. Differ. Equ. pp. 1–85. North-Holland, Amsterdam (2004)

  4. Arendt, W., Batty, C.J.K., Hieber, M., Neubrander, F.: Vector-valued Laplace transforms and Cauchy problems, vol 96. In: Monographs in Mathematics, Birkhäuser Verlag, Basel (2001)

  5. Arendt W., Beil M., Fleischer F., Lück S., Portet S., Schmidt V.: The Laplacian in a stochastic model for spatiotemporal reaction systems. Ulmer Seminare 13, 133–144 (2008)

    Google Scholar 

  6. Arendt W., Bu S.: The operator-valued Marcinkiewicz multiplier theorem and maximal regularity. Math. Z. 240(2), 311–343 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bu S.: On operator-valued Fourier multipliers. Sci. China Ser. A 49(4), 574–576 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bu S., Kim J.M.: Operator-valued Fourier multiplier theorems on L p -spaces on \({\mathbb{T}^d}\) . Arch. Math. 82(5), 404–414 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cowling M., Doust I., McIntosh A., Yagi A.: Banach space operators with a bounded H functional calculus. J. Aust. Math. Soc. Ser. A 60(1), 51–89 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  10. Denk R., Hieber M., Prüss J.: \({\mathcal{R}}\) -boundedness, Fourier multipliers and problems of elliptic and parabolic type. Mem. Am. Math. Soc. 166(788), viii–114 (2003)

    Google Scholar 

  11. Denk, R., Nau, T.: Discrete Fourier multipliers and cylindrical boundary value problems. Proc. Math. Roy. Soc. Edinb., to appear

  12. Dore, G.: L p regularity for abstract differential equations. In: Functional Analysis and Related Topics, 1991 (Kyoto). Lecture Notes in Math., vol 1540, pp. 25–38. Springer, Berlin (1993)

  13. Duong, X.T.: H functional calculus of second order elliptic partial differential operators on L p spaces. In: Miniconference on Operators in Analysis (Sydney, 1989). Proc. Centre Math. Anal. Aust. Nat. Univ., vol. 24, pp. 91–102. Aust. Nat. Univ., Canberra (1990)

  14. Girardi, M., Weis, L.: Criteria for R-boundedness of operator families. In: Evolution Equations, vol. 234. Lecture Notes in Pure and Appl. Math., pp. 203–221. Dekker, New York (2003)

  15. Grisvard, P.: Elliptic problems in nonsmooth domains. Monographs and Studies in Mathematics, vol 24. Pitman, Boston (1985)

  16. Haase, M.: The functional calculus for sectorial operators. In: Operator Theory: Advances and Applications, vol. 169. Birkhäuser, Basel (2006)

  17. Haller R., Heck H., Noll A.: Mikhlin’s theorem for operator-valued Fourier multipliers in n variables. Math. Nachr. 244, 110–130 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  18. Jerison D., Kenig C.E.: The inhomogeneous Dirichlet problem in Lipschitz domains. J. Funct. Anal. 130(1), 161–219 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kalton N.J., Weis L.: The H -calculus and sums of closed operators. Math. Ann. 321(2), 319–345 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kunstmann, P.C., Weis, L.: Maximal L p -regularity for parabolic equations, Fourier multiplier theorems and H -functional calculus. In: Functional Analytic Methods for Evolution Equations. Lecture Notes in Mathematics, vol. 1855, pp. 65–311. Springer, Berlin (2004)

  21. Nau T.: L p-Theorie of Cylindrical Boundary Value Problems Dissertation. Springer Spektrum Research, Wiesbaden (2012)

    Book  Google Scholar 

  22. Nau, T., Saal, J.: \({\mathcal{R}}\) -sectoriality of cylindrical boundary value problems. In: Parabolic Problems. The Herbert Amann Festschrift. Progr. Nonlinear Differential Equations Appl., vol. 80, pp. 479–505. Birkhäuser, Basel (2011)

  23. Nau T., Saal J.: \({\mathcal{H}^\infty}\) -calculus for cylindrical boundary value problems. Adv. Differ. Equ. 17(7-8), 767–800 (2012)

    MathSciNet  MATH  Google Scholar 

  24. Ouhabaz, E.M.: Analysis of heat equations on domains. In: London Mathematical Society Monographs Series, vol. 31. Princeton University Press, Princeton (2005)

  25. Ruzhansky, M., Turunen, V.: Pseudo-differential operators and symmetries: background analysis and advanced topics. In: Pseudo-Differential Operators: Theory and Applications, vol. 2. Birkhäuser, Basel (2010)

  26. Štrkalj, Ž., Weis, L.: On operator-valued Fourier multiplier theorems. Trans. Am. Math. Soc. 359(8), 3529–3547 (electronic) (2007)

    Google Scholar 

  27. Weis L.: Operator-valued Fourier multiplier theorems and maximal L p -regularity. Math. Ann. 319(4), 735–758 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  28. Wood I.: Maximal L p-regularity for the Laplacian on Lipschitz domains. Math. Z. 255(4), 855–875 (2007)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tobias Nau.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nau, T. The Laplacian on Cylindrical Domains. Integr. Equ. Oper. Theory 75, 409–431 (2013). https://doi.org/10.1007/s00020-012-2031-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00020-012-2031-3

Mathematics Subject Classification (2010)

Keywords

Navigation