Skip to main content

Advertisement

Log in

Control of DNA integrity in skeletal muscle under physiological and pathological conditions

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Skeletal muscle is a highly oxygen-consuming tissue that ensures body support and movement, as well as nutrient and temperature regulation. DNA damage induced by reactive oxygen species is present in muscles and tends to accumulate with age. Here, we present a summary of data obtained on DNA damage and its implication in muscle homeostasis, myogenic differentiation and neuromuscular disorders. Controlled and transient DNA damage appears to be essential for muscular homeostasis and differentiation while uncontrolled and chronic DNA damage negatively affects muscle health.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Hoeijmakers JHJ (2009) DNA damage, aging, and cancer. N Engl J Med 361:1475–1485. doi:10.1056/NEJMra0804615

    Article  CAS  PubMed  Google Scholar 

  2. Lindahl T (1993) Instability and decay of the primary structure of DNA. Nature 362:709–715. doi:10.1038/362709a0

    Article  CAS  PubMed  Google Scholar 

  3. Murphy MP (2009) How mitochondria produce reactive oxygen species. Biochem J 417:1–13. doi:10.1042/BJ20081386

    Article  CAS  PubMed  Google Scholar 

  4. Barbieri E, Sestili P (2012) Reactive oxygen species in skeletal muscle signaling. J Signal Transduct 2012:982794. doi:10.1155/2012/982794

    Article  PubMed  CAS  Google Scholar 

  5. Vasilaki A, Jackson MJ (2013) Role of reactive oxygen species in the defective regeneration seen in aging muscle. Free Radic Biol Med 65:317–323. doi:10.1016/j.freeradbiomed.2013.07.008

    Article  CAS  PubMed  Google Scholar 

  6. Powers SK, Ji LL, Kavazis AN, Jackson MJ (2011) Reactive oxygen species: impact on skeletal muscle. Compr Physiol 1:941–969. doi:10.1002/cphy.c100054

    PubMed  PubMed Central  Google Scholar 

  7. Lamb GD, Westerblad H (2011) Acute effects of reactive oxygen and nitrogen species on the contractile function of skeletal muscle. J Physiol 589:2119–2127. doi:10.1113/jphysiol.2010.199059

    Article  CAS  PubMed  Google Scholar 

  8. Beckendorf L, Linke WA (2015) Emerging importance of oxidative stress in regulating striated muscle elasticity. J Muscle Res Cell Motil 36:25–36. doi:10.1007/s10974-014-9392-y

    Article  CAS  PubMed  Google Scholar 

  9. Gomez-Cabrera MC, Borras C, Pallardo FV et al (2005) Decreasing xanthine oxidase-mediated oxidative stress prevents useful cellular adaptations to exercise in rats. J Physiol 567:113–120. doi:10.1113/jphysiol.2004.080564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zuo L, Christofi FL, Wright VP et al (2004) Lipoxygenase-dependent superoxide release in skeletal muscle. J Appl Physiol 97:661–668. doi:10.1152/japplphysiol.00096.2004

    Article  CAS  PubMed  Google Scholar 

  11. Bedard K, Krause K-H (2007) The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev 87:245–313. doi:10.1152/physrev.00044.2005

    Article  CAS  PubMed  Google Scholar 

  12. Valko M, Leibfritz D, Moncol J et al (2007) Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 39:44–84. doi:10.1016/j.biocel.2006.07.001

    Article  CAS  PubMed  Google Scholar 

  13. Culotta VC, Yang M, O’Halloran TV (2006) Activation of superoxide dismutases: putting the metal to the pedal. Biochim Biophys Acta Mol Cell Res 1763:747–758. doi:10.1016/j.bbamcr.2006.05.003

    Article  CAS  Google Scholar 

  14. Kirkman HN, Gaetani GF (2007) Mammalian catalase: a venerable enzyme with new mysteries. Trends Biochem Sci 32:44–50. doi:10.1016/j.tibs.2006.11.003

    Article  CAS  PubMed  Google Scholar 

  15. Janero DR (1991) Therapeutic potential of vitamin E in the pathogenesis of spontaneous atherosclerosis. Free Radic Biol Med 11:129–144. doi:10.1016/0891-5849(91)90193-7

    Article  CAS  PubMed  Google Scholar 

  16. El-Agamey A, Lowe GM, McGarvey DJ et al (2004) Carotenoid radical chemistry and antioxidant/pro-oxidant properties. Arch Biochem Biophys 430:37–48. doi:10.1016/j.abb.2004.03.007

    Article  CAS  PubMed  Google Scholar 

  17. Carr A, Frei B (1999) Does vitamin C act as a pro-oxidant under physiological conditions? FASEB J 13:1007–1024

    CAS  PubMed  Google Scholar 

  18. Meister A, Anderson ME (1983) Glutathione. Annu Rev Biochem 52:711–760. doi:10.1146/annurev.bi.52.070183.003431

    Article  CAS  PubMed  Google Scholar 

  19. Taghiyar M, Darvishi L, Askari G et al (2013) The effect of vitamin C and e supplementation on muscle damage and oxidative stress in female athletes: a clinical trial. Int J Prev Med 4:S16–S23

    PubMed  PubMed Central  Google Scholar 

  20. Hampton MB, Kettle AJ, Winterbourn CC (1998) Inside the neutrophil phagosome: oxidants, myeloperoxidase, and bacterial killing. Blood 92:3007–3017

    CAS  PubMed  Google Scholar 

  21. Hardbower DM, de Sablet T, Chaturvedi R, Wilson KT (2013) Chronic inflammation and oxidative stress: the smoking gun for helicobacter pylori-induced gastric cancer? Gut Microbes. doi:10.4161/gmic.25583

    PubMed  PubMed Central  Google Scholar 

  22. Mlchlels C, Kfmacli J (1988) Use of the inhibition of enzymatic antioxidant systems in order to evaluate their physiological importance. Eur J Biochem 177:435–441

    Article  Google Scholar 

  23. Hagen TM, Ingersoll RT, Lykkesfeldt J et al (1999) (R)-alpha-lipoic acid-supplemented old rats have improved mitochondrial function, decreased oxidative damage, and increased metabolic rate. FASEB J 13:411–418

    CAS  PubMed  Google Scholar 

  24. Liu B, Chen Y, St. Clair DK (2008) ROS and p53: a versatile partnership. Free Radic Biol Med 44:1529–1535. doi:10.1016/j.freeradbiomed.2008.01.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Klaunig JE, Xu Y, Isenberg JS et al (1998) The role of oxidative stress in chemical carcinogenesis. Environ Health Perspect 106(Suppl):289–295. doi:10.1289/ehp.98106s1289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Rudd SG, Valerie NCK, Helleday T (2016) Pathways controlling dNTP pools to maintain genome stability. DNA Repair (Amst) 44:193–204. doi:10.1016/j.dnarep.2016.05.032

    Article  CAS  Google Scholar 

  27. Li J-M, Shah AM (2003) ROS generation by nonphagocytic NADPH oxidase: potential relevance in diabetic nephropathy. J Am Soc Nephrol 14:221S–226S. doi:10.1097/01.ASN.0000077406.67663.E7

    Article  CAS  Google Scholar 

  28. Robertson RP, Harmon J, Tran PO et al (2003) Glucose toxicity in β-cells: type 2 diabetes, good radicals gone bad, and the glutathione connection. Diabetes 52:581–587. doi:10.2337/diabetes.52.3.581

    Article  CAS  PubMed  Google Scholar 

  29. Butler R, Morris AD, Belch JJF et al (2000) Allopurinol normalizes endothelial dysfunction in type 2 diabetics with mild hypertension. Hypertension 35:746–751. doi:10.1161/01.HYP.35.3.746

    Article  CAS  PubMed  Google Scholar 

  30. Dikalov SI, Vitek MP, Mason RP (2004) Cupric-amyloid β peptide complex stimulates oxidation of ascorbate and generation of hydroxyl radical. Free Radic Biol Med 36:340–347. doi:10.1016/j.freeradbiomed.2003.11.004

    Article  CAS  PubMed  Google Scholar 

  31. Allan Butterfield D, Castegna A, Lauderback CM, Drake J (2002) Evidence that amyloid beta-peptide-induced lipid peroxidation and its sequelae in Alzheimer’s disease brain contribute to neuronal death. Neurobiol Aging 23:655–664. doi:10.1016/S0197-4580(01)00340-2

    Article  CAS  PubMed  Google Scholar 

  32. Gomez-Cabrera MC, Domenech E, Viña J (2008) Moderate exercise is an antioxidant: upregulation of antioxidant genes by training. Free Radic Biol Med 44:126–131. doi:10.1016/j.freeradbiomed.2007.02.001

    Article  CAS  PubMed  Google Scholar 

  33. Barton-Davis ER, Shoturma DI, Musaro A et al (1998) Viral mediated expression of insulin-like growth factor I blocks the aging-related loss of skeletal muscle function. Proc Natl Acad Sci USA 95:15603–15607. doi:10.1073/pnas.95.26.15603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Reid MB (2001) Invited Review: redox modulation of skeletal muscle contraction: what we know and what we don’t. J Appl Physiol 90:724–731. doi:10.1152/japplphysiol.00017.2004

    Article  CAS  PubMed  Google Scholar 

  35. Powers S, Jackson M (2008) Exercise-induced oxidative stress: cellular mechanisms and impact on muscle force production. Physiol Rev 88:1243–1276. doi:10.1152/physrev.00031.2007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Tidball JG (2005) Inflammatory processes in muscle injury and repair. Am J Physiol Regul Integr Comp Physiol 288:R345–R353. doi:10.1152/ajpregu.00454.2004

    Article  CAS  PubMed  Google Scholar 

  37. Irrcher I, Ljubicic V, Hood DA (2009) Interactions between ROS and AMP kinase activity in the regulation of PGC-1alpha transcription in skeletal muscle cells. Am J Physiol Cell Physiol 296:C116–C123. doi:10.1152/ajpcell.00267.2007

    Article  CAS  PubMed  Google Scholar 

  38. Musarò A, Fulle S, Fanò G (2010) Oxidative stress and muscle homeostasis. Curr Opin Clin Nutr Metab Care 13:236–242. doi:10.1097/MCO.0b013e3283368188

    Article  PubMed  CAS  Google Scholar 

  39. Choi CS, Befroy DE, Codella R et al (2008) Paradoxical effects of increased expression of PGC-1alpha on muscle mitochondrial function and insulin-stimulated muscle glucose metabolism. Proc Natl Acad Sci USA 105:19926–19931. doi:10.1073/pnas.0810339105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kang C, O’Moore KM, Dickman JR, Ji LL (2009) Exercise activation of muscle peroxisome proliferator-activated receptor-γ coactivator-1α signaling is redox sensitive. Free Radic Biol Med 47:1394–1400. doi:10.1016/j.freeradbiomed.2009.08.007

    Article  CAS  PubMed  Google Scholar 

  41. Kelly DP, Scarpulla RC (2004) Transcriptional regulatory circuits controlling mitochondrial biogenesis and function. Genes Dev 18:357–368. doi:10.1101/gad.1177604

    Article  CAS  PubMed  Google Scholar 

  42. Laplante M, Sabatini DM (2012) MTOR signaling in growth control and disease. Cell 149:274–293. doi:10.1016/j.cell.2012.03.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Bentzinger CF, Romanino K, Cloëtta D et al (2008) Skeletal muscle-specific ablation of raptor, but not of rictor, causes metabolic changes and results in muscle dystrophy. Cell Metab 8:411–424. doi:10.1016/j.cmet.2008.10.002

    Article  CAS  PubMed  Google Scholar 

  44. Mitsuishi M, Miyashita K, Muraki A et al (2013) Dietary protein decreases exercise endurance through rapamycin-sensitive suppression of muscle mitochondria. Am J Physiol Endocrinol Metab 305:E776–E784. doi:10.1152/ajpendo.00145.2013

    Article  CAS  PubMed  Google Scholar 

  45. Ruetenik A, Barrientos A (2015) Dietary restriction, mitochondrial function and aging: from yeast to humans. Biochim Biophys Acta 1847:1434–1447. doi:10.1016/j.bbabio.2015.05.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Li M, Zhao L, Liu J et al (2010) Multi-mechanisms are involved in reactive oxygen species regulation of mTORC1 signaling. Cell Signal 22:1469–1476. doi:10.1016/j.cellsig.2010.05.015

    Article  CAS  PubMed  Google Scholar 

  47. Sarbassov DD, Sabatini DM (2005) Redox regulation of the nutrient-sensitive raptor-mTOR pathway and complex. J Biol Chem 280:39505–39509. doi:10.1074/jbc.M506096200

    Article  CAS  PubMed  Google Scholar 

  48. Yoshida S, Hong S, Suzuki T et al (2011) Redox regulates mammalian target of rapamycin complex 1 (mTORC1) activity by modulating the TSC1/TSC2-Rheb GTPase pathway. J Biol Chem 286:32651–32660. doi:10.1074/jbc.M111.238014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Budanov AV, Sablina A, Feinstein E et al (2004) Regeneration of peroxiredoxins by p53-regulated sestrins, homologs of bacterial AhpD. Science 304:596–600. doi:10.1126/science.1095569

    Article  CAS  PubMed  Google Scholar 

  50. Kim H, An S, Ro S-H et al (2015) Janus-faced Sestrin2 controls ROS and mTOR signalling through two separate functional domains. Nat Commun 6:10025. doi:10.1038/ncomms10025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Ding B, Parmigiani A, Divakaruni AS et al (2016) Sestrin2 is induced by glucose starvation via the unfolded protein response and protects cells from non-canonical necroptotic cell death. Sci Rep 6:22538. doi:10.1038/srep22538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Nikitaki Z, Hellweg CE, Georgakilas AG, Ravanat J-L (2015) Stress-induced DNA damage biomarkers: applications and limitations. Front Chem 3:35. doi:10.3389/fchem.2015.00035

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Beckman KB, Ames BN (1997) Oxidative decay of DNA. J Biol Chem 272:19633–19636. doi:10.1074/jbc.272.32.19633

    Article  CAS  PubMed  Google Scholar 

  54. Yasui M, Kanemaru Y, Kamoshita N et al (2014) Tracing the fates of site-specifically introduced DNA adducts in the human genome. DNA Repair (Amst) 15:11–20. doi:10.1016/j.dnarep.2014.01.003

    Article  CAS  Google Scholar 

  55. Demple B, Harrison L (1994) Repair of oxidative damage to DNA: enzymology and biology. Annu Rev Biochem 63:915–948. doi:10.1146/annurev.biochem.63.1.915

    Article  CAS  PubMed  Google Scholar 

  56. Almeida KH, Sobol RW (2007) A unified view of base excision repair: lesion-dependent protein complexes regulated by post-translational modification. DNA Repair (Amst) 6:695–711. doi:10.1016/j.dnarep.2007.01.009

    Article  CAS  Google Scholar 

  57. Breen AP, Murphy JA (1995) Reactions of oxyl radicals with DNA. Free Radic Biol Med 18:1033–1077. doi:10.1016/0891-5849(94)00209-3

    Article  CAS  PubMed  Google Scholar 

  58. Nakamura J, Swenberg JA (1999) Endogenous apurinic/apyrimidinic sites in genomic DNA of mammalian tissues. Cancer Res 59:2522–2526

    CAS  PubMed  Google Scholar 

  59. De Bont R (2004) Endogenous DNA damage in humans: a review of quantitative data. Mutagenesis 19:169–185. doi:10.1093/mutage/geh025

    Article  PubMed  Google Scholar 

  60. Nakamura J, La DK, Swenberg JA (2000) 5′-nicked apurinic/apyrimidinic sites are resistant to beta-elimination by beta-polymerase and are persistent in human cultured cells after oxidative stress. J Biol Chem 275:5323–5328

    Article  CAS  PubMed  Google Scholar 

  61. Iarovaia OV, Rubtsov M, Ioudinkova E et al (2014) Dynamics of double strand breaks and chromosomal translocations. Mol Cancer 13:249. doi:10.1186/1476-4598-13-249

    Article  PubMed  PubMed Central  Google Scholar 

  62. Obeid S, Blatter N, Kranaster R et al (2010) Replication through an abasic DNA lesion: structural basis for adenine selectivity. EMBO J 29:1738–1747. doi:10.1038/emboj.2010.64

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Jackson AL, Loeb LA (2001) The contribution of endogenous sources of DNA damage to the multiple mutations in cancer. Mutat Res Fundam Mol Mech Mutagen 477:7–21. doi:10.1016/S0027-5107(01)00091-4

    Article  CAS  Google Scholar 

  64. Hoeijmakers JHJ (2001) DNA repair mechanisms. Maturitas 38:17–22

    Article  CAS  PubMed  Google Scholar 

  65. Yan S, Sorrell M, Berman Z (2014) Functional interplay between ATM/ATR-mediated DNA damage response and DNA repair pathways in oxidative stress. Cell Mol Life Sci 71:3951–3967. doi:10.1007/s00018-014-1666-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Bernstein C, Bernstein H, Payne CM, Garewal H (2002) DNA repair/pro-apoptotic dual-role proteins in five major DNA repair pathways: fail-safe protection against carcinogenesis. Mutat Res Rev Mutat Res 511:145–178. doi:10.1016/S1383-5742(02)00009-1

    Article  CAS  Google Scholar 

  67. Jiricny J (2006) The multifaceted mismatch-repair system. Nat Rev Mol Cell Biol 7:335–346. doi:10.1038/nrm1907

    Article  CAS  PubMed  Google Scholar 

  68. Moynahan ME, Jasin M (2010) Mitotic homologous recombination maintains genomic stability and suppresses tumorigenesis. Nat Rev Mol Cell Biol 11:196–207. doi:10.1038/nrm2851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. van Gent DC, van der Burg M (2007) Non-homologous end-joining, a sticky affair. Oncogene 26:7731–7740. doi:10.1038/sj.onc.1210871

    Article  PubMed  CAS  Google Scholar 

  70. Epe B (2002) Role of endogenous oxidative DNA damage in carcinogenesis: what can we learn from repair-deficient mice? Biol Chem 383:467–475. doi:10.1515/BC.2002.049

    Article  CAS  PubMed  Google Scholar 

  71. Dawson BA, Lough J (1988) Immunocytochemical localization of transient DNA strand breaks in differentiating myotubes using in situ nick-translation. Dev Biol 127:362–367. doi:10.1016/0012-1606(88)90322-3

    Article  CAS  PubMed  Google Scholar 

  72. Coulton GR, Rogers B, Strutt P et al (1992) In situ localisation of single-stranded DNA breaks in nuclei of a subpopulation of cells within regenerating skeletal muscle of the dystrophic mdx mouse. J Cell Sci 102(Pt 3):653–662

    CAS  PubMed  Google Scholar 

  73. Larsen BD, Rampalli S, Burns LE et al (2010) Caspase 3/caspase-activated DNase promote cell differentiation by inducing DNA strand breaks. Proc Natl Acad Sci USA 107:4230–4235. doi:10.1073/pnas.0913089107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Al-Khalaf MH, Blake LE, Larsen BD et al (2016) Temporal activation of XRCC1-mediated DNA repair is essential for muscle differentiation. Cell Discov 2:15041. doi:10.1038/celldisc.2015.41

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Zakharova VV, Dib C, Saada YB et al (2016) Uncoupling of oxidative phosphorylation and antioxidants affect fusion of primary human myoblasts in vitro. Biopolym Cell 32:111–117. doi:10.7124/bc.000913

    Article  Google Scholar 

  76. Ho L, Hanawalt PC (1991) Gene-specific DNA repair in terminally differentiating rat myoblasts. Mutat Res Repair 255:123–141. doi:10.1016/0921-8777(91)90047-S

    Article  CAS  Google Scholar 

  77. Nouspikel T, Hanawalt PC (2002) DNA repair in terminally differentiated cells. DNA Repair (Amst) 1:59–75. doi:10.1016/S1568-7864(01)00005-2

    Article  CAS  Google Scholar 

  78. Puri PL, Bhakta K, Wood LD et al (2002) A myogenic differentiation checkpoint activated by genotoxic stress. Nat Genet 32:585–593. doi:10.1038/ng1023

    Article  CAS  PubMed  Google Scholar 

  79. Bou Saada Y, Dib C, Dmitriev P et al (2016) Facioscapulohumeral dystrophy myoblasts efficiently repair moderate levels of oxidative DNA damage. Histochem Cell Biol 145:475–483. doi:10.1007/s00418-016-1410-2

    Article  CAS  PubMed  Google Scholar 

  80. Dmitriev P, Bou Saada Y, Dib C et al (2016) DUX4-induced constitutive DNA damage and oxidative stress contribute to aberrant differentiation of myoblasts from FSHD patients. Free Radic Biol Med 99:244–258. doi:10.1016/j.freeradbiomed.2016.08.007

    Article  CAS  PubMed  Google Scholar 

  81. Schmidt WM, Uddin MH, Dysek S et al (2011) DNA damage, somatic aneuploidy, and malignant sarcoma susceptibility in muscular dystrophies. PLoS Genet 7:e1002042. doi:10.1371/journal.pgen.1002042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Fanzani A, Monti E, Donato R, Sorci G (2013) Muscular dystrophies share pathogenetic mechanisms with muscle sarcomas. Trends Mol Med 19:546–554. doi:10.1016/j.molmed.2013.07.001

    Article  CAS  PubMed  Google Scholar 

  83. Best BP (2009) Nuclear DNA damage as a direct cause of aging. Rejuvenation Res 12:199–208. doi:10.1089/rej.2009.0847

    Article  CAS  PubMed  Google Scholar 

  84. Freitas AA, De Magalhães JP (2011) A review and appraisal of the DNA damage theory of ageing. Mutat Res Rev Mutat Res 728:12–22. doi:10.1016/j.mrrev.2011.05.001

    Article  CAS  Google Scholar 

  85. Ishchenko A, Sinitsyna O, Krysanova Z et al (2003) Age-dependent increase of 8-oxoguanine-, hypoxanthine-, and uracil- DNA glycosylase activities in liver extracts from OXYS rats with inherited overgeneration of free radicals and Wistar rats. Med Sci Monit 9:BR16–BR24

    CAS  PubMed  Google Scholar 

  86. Sinha JK, Ghosh S, Swain U et al (2014) Increased macromolecular damage due to oxidative stress in the neocortex and hippocampus of WNIN/Ob, a novel rat model of premature aging. Neuroscience 269:256–264. doi:10.1016/j.neuroscience.2014.03.040

    Article  CAS  PubMed  Google Scholar 

  87. Hamilton ML, Van Remmen H, Drake JA et al (2001) Does oxidative damage to DNA increase with age? Proc Natl Acad Sci USA 98:10469–10474. doi:10.1073/pnas.171202698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Short KR, Bigelow ML, Kahl J et al (2005) Decline in skeletal muscle mitochondrial function with aging in humans. Proc Natl Acad Sci USA 102:5618–5623. doi:10.1073/pnas.0501559102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Mecocci P, Fanó G, Fulle S et al (1999) Age-dependent increases in oxidative damage to DNA, lipids, and proteins in human skeletal muscle. Free Radic Biol Med 26:303–308. doi:10.1016/S0891-5849(98)00208-1

    Article  CAS  PubMed  Google Scholar 

  90. Piec I, Listrat A, Alliot J et al (2005) Differential proteome analysis of aging in rat skeletal muscle. FASEB J 19:1143–1145. doi:10.1096/fj.04-3084fje

    CAS  PubMed  Google Scholar 

  91. Vermeij WP, Hoeijmakers JHJ, Pothof J (2016) Genome integrity in aging: human syndromes, mouse models, and therapeutic options. Annu Rev Pharmacol Toxicol 56:427–445. doi:10.1146/annurev-pharmtox-010814-124316

    Article  CAS  PubMed  Google Scholar 

  92. Cortopassi GA, Arnheim N (1990) Detection of a specific mitochondrial DNA deletion in tissues of older humans. Nucleic Acids Res 18:6927–6933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Richter C, Park JW, Ames BN (1988) Normal oxidative damage to mitochondrial and nuclear DNA is extensive. Proc Natl Acad Sci USA 85:6465–6467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Cortopassi GA, Shibata D, Soong NW, Arnheim N (1992) A pattern of accumulation of a somatic deletion of mitochondrial DNA in aging human tissues. Proc Natl Acad Sci USA 89:7370–7374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Melov S, Shoffner JM, Kaufman A, Wallace DC (1995) Marked increase in the number and variety of mitochondrial DNA rearrangements in aging human skeletal muscle. Nucleic Acids Res 23:4122–4126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Khrapko K, Vijg J (2009) Mitochondrial DNA mutations and aging: devils in the details? Trends Genet 25:91–98. doi:10.1016/j.tig.2008.11.007

    Article  CAS  PubMed  Google Scholar 

  97. Khrapko K, Turnbull D (2014) Mitochondrial DNA mutations in aging. Prog Mol Biol Transl Sci 27:29–62

    Article  CAS  Google Scholar 

  98. Wanagat J, Cao Z, Pathare P, Aiken JM (2001) Mitochondrial DNA deletion mutations colocalize with segmental electron transport system abnormalities, muscle fiber atrophy, fiber splitting, and oxidative damage in sarcopenia. FASEB J 15:322–332. doi:10.1096/fj.00-0320com

    Article  CAS  PubMed  Google Scholar 

  99. Herbst A, Pak JW, McKenzie D et al (2007) Accumulation of mitochondrial DNA deletion mutations in aged muscle fibers: evidence for a causal role in muscle fiber loss. J Gerontol A Biol Sci Med Sci 62:235–245

    Article  PubMed  PubMed Central  Google Scholar 

  100. Marzetti E, Hwang JCY, Lees HA et al (2010) Mitochondrial death effectors: relevance to sarcopenia and disuse muscle atrophy. Biochim Biophys Acta Gen Subj 1800:235–244. doi:10.1016/j.bbagen.2009.05.007

    Article  CAS  Google Scholar 

  101. Cheema N, Herbst A, McKenzie D, Aiken JM (2015) Apoptosis and necrosis mediate skeletal muscle fiber loss in age-induced mitochondrial enzymatic abnormalities. Aging Cell 14:1085–1093. doi:10.1111/acel.12399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Trifunovic A, Wredenberg A, Falkenberg M et al (2004) Premature ageing in mice expressing defective mitochondrial DNA polymerase. Nature 429:417–423. doi:10.1038/nature02517

    Article  CAS  PubMed  Google Scholar 

  103. Kujoth GC, Hiona A, Pugh TD et al (2005) Mitochondrial DNA mutations, oxidative stress, and apoptosis in mammalian aging. Science 309:481–484. doi:10.1126/science.1112125

    Article  CAS  PubMed  Google Scholar 

  104. Kolesar JE, Safdar A, Abadi A et al (2014) Defects in mitochondrial DNA replication and oxidative damage in muscle of mtDNA mutator mice. Free Radic Biol Med 75:241–251. doi:10.1016/j.freeradbiomed.2014.07.038

    Article  CAS  PubMed  Google Scholar 

  105. Dai D-F, Chen T, Wanagat J et al (2010) Age-dependent cardiomyopathy in mitochondrial mutator mice is attenuated by overexpression of catalase targeted to mitochondria. Aging Cell 9:536–544. doi:10.1111/j.1474-9726.2010.00581.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Skulachev VP, Anisimov VN, Antonenko YN et al (2009) An attempt to prevent senescence: a mitochondrial approach. Biochim Biophys Acta Bioenerg 1787:437–461. doi:10.1016/j.bbabio.2008.12.008

    Article  CAS  Google Scholar 

  107. Liu B, Wang J, Chan KM et al (2005) Genomic instability in laminopathy-based premature aging. Nat Med 11:780–785. doi:10.1038/nm1266

    Article  CAS  PubMed  Google Scholar 

  108. Capell BC, Collins FS (2006) Human laminopathies: nuclei gone genetically awry. Nat Rev Genet 7:940–952. doi:10.1038/nrg1906

    Article  CAS  PubMed  Google Scholar 

  109. Camozzi D, Capanni C, Cenni V et al (2014) Diverse lamin-dependent mechanisms interact to control chromatin dynamics: focus on laminopathies. Nucleus 5:1–14. doi:10.4161/nucl.36289

    Article  Google Scholar 

  110. Fayzullina S, Martin LJ (2014) Skeletal muscle DNA damage precedes spinal motor neuron DNA damage in a mouse model of spinal muscular atrophy (SMA). PLoS One. doi:10.1371/journal.pone.0093329

    PubMed  PubMed Central  Google Scholar 

  111. Dmitriev P, Lipinski M, Vassetzky YS (2009) Pearls in the junk: dissecting the molecular pathogenesis of facioscapulohumeral muscular dystrophy. Neuromuscul Disord 19:17–20. doi:10.1016/j.nmd.2008.09.004

    Article  PubMed  Google Scholar 

  112. Powers SK, Kavazis AN, DeRuisseau KC (2005) Mechanisms of disuse muscle atrophy: role of oxidative stress. Am J Physiol Regul Integr Comp Physiol 288:R337–R344. doi:10.1152/ajpregu.00469.2004

    Article  CAS  PubMed  Google Scholar 

  113. Powers SK, Kavazis AN, McClung JM (2007) Oxidative stress and disuse muscle atrophy. J Appl Physiol 102:2389–2397. doi:10.1152/japplphysiol.01202.2006

    Article  CAS  PubMed  Google Scholar 

  114. Togliatto G, Trombetta A, Dentelli P et al (2013) Unacylated ghrelin promotes skeletal muscle regeneration following hindlimb ischemia via SOD-2-mediated miR-221/222 expression. J Am Hear Assoc 2:e000376. doi:10.1161/JAHA.113.000376

    Article  CAS  Google Scholar 

  115. Hidalgo M, Marchant D, Quidu P et al (2014) Oxygen modulates the glutathione peroxidase activity during the L6 myoblast early differentiation process. Cell Physiol Biochem 33:67–77. doi:10.1159/000356650

    Article  CAS  PubMed  Google Scholar 

  116. Kim JH, Lawler JM (2012) Amplification of proinflammatory phenotype, damage, and weakness by oxidative stress in the diaphragm muscle of mdx mice. Free Radic Biol Med 52:1597–1606. doi:10.1016/j.freeradbiomed.2012.01.015

    Article  CAS  PubMed  Google Scholar 

  117. Selsby JT (2011) Increased catalase expression improves muscle function in mdx mice. Exp Physiol 96:194–202. doi:10.1113/expphysiol.2010.054379

    Article  CAS  PubMed  Google Scholar 

  118. Bosutti A, Degens H (2015) The impact of resveratrol and hydrogen peroxide on muscle cell plasticity shows a dose-dependent interaction. Sci Rep 5:8093. doi:10.1038/srep08093

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  119. Jazwa A, Stepniewski J, Zamykal M et al (2013) Pre-emptive hypoxia-regulated HO-1 gene therapy improves post-ischaemic limb perfusion and tissue regeneration in mice. Cardiovasc Res 97:115–124. doi:10.1093/cvr/cvs284

    Article  CAS  PubMed  Google Scholar 

  120. Murphy ME, Kehrer JP (1986) Activities of antioxidant enzymes in muscle, liver and lung of chickens with inherited muscular dystrophy. Biochem Biophys Res Commun 134:550–556. doi:10.1016/S0006-291X(86)80455-7

    Article  CAS  PubMed  Google Scholar 

  121. Messina S, Altavilla D, Aguennouz M et al (2006) Lipid peroxidation inhibition blunts nuclear factor-κB activation, reduces skeletal muscle degeneration, and enhances muscle function in mdx mice. Am J Pathol 168:918–926. doi:10.2353/ajpath.2006.050673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Rodriguez MC, Tarnopolsky MA (2003) Patients with dystrophinopathy show evidence of increased oxidative stress. Free Radic Biol Med 34:1217–1220. doi:10.1016/S0891-5849(03)00141-2

    Article  CAS  PubMed  Google Scholar 

  123. Toscano A, Messina S, Campo GM et al (2005) Oxidative stress in myotonic dystrophy type 1. Free Radic Res 39:771–776. doi:10.1080/10715760500138932

    Article  CAS  PubMed  Google Scholar 

  124. Haslbeck KM, Friess U, Schleicher ED et al (2005) The RAGE pathway in inflammatory myopathies and limb girdle muscular dystrophy. Acta Neuropathol 110:247–254. doi:10.1007/s00401-005-1043-3

    Article  CAS  PubMed  Google Scholar 

  125. Fulle S, Fanò G (2007) The contribution of reactive oxygen species in sarcopenia and muscle aging. Role Phys Exerc Prev Dis Improv Qual Life 39:103–111. doi:10.1007/978-88-470-0376-7_6

    Article  Google Scholar 

  126. Dorchies OM, Wagner S, Vuadens O et al (2006) Green tea extract and its major polyphenol (–)-epigallocatechin gallate improve muscle function in a mouse model for Duchenne muscular dystrophy. Am J Physiol Cell Physiol 290:C616–C625. doi:10.1152/ajpcell.00425.2005

    Article  CAS  PubMed  Google Scholar 

  127. Burdi R, Rolland J-F, Fraysse B et al (2009) Multiple pathological events in exercised dystrophic mdx mice are targeted by pentoxifylline: outcome of a large array of in vivo and ex vivo tests. J Appl Physiol 106:1311–1324. doi:10.1152/japplphysiol.90985.2008

    Article  CAS  PubMed  Google Scholar 

  128. Ferguson DO, Alt FW (2001) DNA double strand break repair and chromosomal translocation: lessons from animal models. Oncogene 20:5572–5579. doi:10.1038/sj.onc.1204767

    Article  CAS  PubMed  Google Scholar 

  129. Helleday T (2003) Pathways for mitotic homologous recombination in mammalian cells. Mutat Res 532:103–115

    Article  CAS  PubMed  Google Scholar 

  130. Knoch J, Kamenisch Y, Kubisch C, Berneburg M (2012) Rare hereditary diseases with defects in DNA-repair. Eur J Dermatol 22:443–455. doi:10.1684/ejd.2012.1654

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by the MEGAFSHD Grant from the Association Française contre les Myopathies (AFM) to YSV and the Grant No. 16-54-16015 from the Russian Foundation for Basic Research to BC and VZ. VZ acknowledges the André Mazon fellowship from the French embassy in Russia. We thank Ms. Shirmoné Botha for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yegor S. Vassetzky.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bou Saada, Y., Zakharova, V., Chernyak, B. et al. Control of DNA integrity in skeletal muscle under physiological and pathological conditions. Cell. Mol. Life Sci. 74, 3439–3449 (2017). https://doi.org/10.1007/s00018-017-2530-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-017-2530-0

Keywords

Navigation