Skip to main content
Log in

Emerging roles of calpain proteolytic systems in macrophage cholesterol handling

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Calpains are Ca2+-dependent intracellular proteases that play central roles in the post-translational processing of functional proteins. In mammals, calpain proteolytic systems comprise the endogenous inhibitor calpastatin as well as 15 homologues of the catalytic subunits and two homologues of the regulatory subunits. Recent pharmacological and gene targeting studies in experimental animal models have revealed the contribution of conventional calpains, which consist of the calpain-1 and -2 isozymes, to atherosclerotic diseases. During atherogenesis, conventional calpains facilitate the CD36-dependent uptake of oxidized low-density lipoprotein (LDL), and block cholesterol efflux through ATP-binding cassette transporters in lesional macrophages, allowing the expansion of lipid-enriched atherosclerotic plaques. In addition, calpain-6, an unconventional non-proteolytic calpain, in macrophages reportedly potentiates pinocytotic uptake of native LDL, and attenuates the efferocytic clearance of apoptotic and necrotic cell corpses from the lesions. Herein, we discuss the recent progress that has been made in our understanding of how calpain contributes to atherosclerosis, in particular focusing on macrophage cholesterol handling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

ABCA1:

ATP-binding cassette transporter A1

ABCA7:

ATP-binding cassette transporter A7

ABCG1:

ATP-binding cassette transporter G1

ACAT1:

Acyl-coenzyme A: cholesterol acyltransferase 1

ApoE:

Apolipoprotein E

Capn:

Calpain

EC:

Endothelial cell

EJC:

Exon junction complex

Gas6:

Growth arrest specific 6

HDL:

High-density lipoprotein

ICAM-1:

Intercellular adhesion molecule-1

LDL:

Low-density lipoprotein

LDLR:

LDL receptor

LGMD2A:

Limb-girdle muscular dystrophy type 2A

LOX-1:

Lectin-like oxidized low-density lipoprotein receptor-1

LXRα:

Liver X receptor α

MCP-1:

Monocyte chemoattractant protein-1

M-CSF:

Macrophage colony-stimulating factor

MertK:

C-mer proto-oncogene tyrosine kinase

PPARγ:

Peroxisome proliferator-activated receptor γ

RANKL:

Receptor activator of nuclear factor kappa-B ligand

SOCS3:

Suppressor of cytokine signaling-3

SR-A:

Class A scavenger receptor

TNF-α:

Tumor necrosis factor-α

VCAM-1:

Vascular cell adhesion molecule-1

References

  1. Dayton WR, Goll DE, Zeece MG, Robson RM, Reville WJ (1976) A Ca2+-activated protease possibly involved in myofibrillar protein turnover. Purification from porcine muscle. Biochemistry 15:2150–2158

    Article  CAS  PubMed  Google Scholar 

  2. Dayton WR, Reville WJ, Goll DE, Stromer MH (1976) A Ca2+-activated protease possibly involved in myofibrillar protein turnover. Partial characterization of the purified enzyme. Biochemistry 15:2159–2167

    Article  CAS  PubMed  Google Scholar 

  3. Goll DE, Thompson VF, Li H, Wei W, Cong J (2003) The calpain system. Physiol Rev 83:731–801

    Article  CAS  PubMed  Google Scholar 

  4. Ono Y, Sorimachi H (2012) Calpains: an elaborate proteolytic system. Biochim Biophys Acta 1824:224–236

    Article  CAS  PubMed  Google Scholar 

  5. Ono Y, Saido TC, Sorimachi H (2016) Calpain research for drug discovery: challenges and potential. Nat Rev Drug Discov 15:854–876

    Article  CAS  PubMed  Google Scholar 

  6. Moldoveanu T, Hosfield CM, Lim D, Jia Z, Davies PL (2003) Calpain silencing by a reversible intrinsic mechanism. Nat Struct Biol 10:371–378

    Article  CAS  PubMed  Google Scholar 

  7. Hanna RA, Campbell RL, Davies PL (2008) Calcium-bound structure of calpain and its mechanism of inhibition by calpastatin. Nature 456:409–412

    Article  CAS  PubMed  Google Scholar 

  8. Shao H, Chou J, Baty CJ, Burke NA, Watkins SC, Stolz DB, Wells A (2006) Spatial localization of m-calpain to the plasma membrane by phosphoinositide biphosphate binding during epidermal growth factor receptor-mediated activation. Mol Cell Biol 26:5481–5496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Glading A, Bodnar RJ, Reynolds IJ, Shiraha H, Satish L, Potter DA, Blair HC, Wells A (2004) Epidermal growth factor activates m-calpain (calpain II), at least in part, by extracellular signal-regulated kinase-mediated phosphorylation. Mol Cell Biol 24:2499–2512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Azam M, Andrabi SS, Sahr KE, Kamath L, Kuliopulos A, Chishti AH (2001) Disruption of the mouse µ-calpain gene reveals an essential role in platelet function. Mol Cell Biol 21:2213–2220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Dutt P, Croall DE, Arthur JS, Veyra TD, Williams K, Elce JS, Greer PA (2006) m-Calpain is required for preimplantation embryonic development in mice. BMC Dev Biol 6:3

    Article  PubMed  PubMed Central  Google Scholar 

  12. Arthur JS, Elce JS, Hegadorn C, Williams K, Greer PA (2000) Disruption of the murine calpain small subunit gene, Capn4: calpain is essential for embryonic development but not for cell growth and division. Mol Cell Biol 20:4474–4481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Takano J, Mihira N, Fujioka R, Hosoki E, Chishti AH, Saido TC (2011) Vital role of the calpain-calpastatin system for placental-integrity-dependent embryonic survival. Mol Cell Biol 31:4097–4106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Adams RH, Porras A, Alonso G, Jones M, Vintersten K, Panelli S, Valladares A, Perez L, Klein R, Klein R, Nebreda AR (2000) Essential role of p38α MAP kinase in placental but not embryonic cardiovascular development. Mol Cell 6:109–116

    Article  CAS  PubMed  Google Scholar 

  15. Hatano N, Mori Y, Oh-hora M, Kosugi A, Fujikawa T, Nakai N, Niwa H, Miyazaki J, Hamaoka T, Ogata M (2003) Essential role for ERK2 mitogen-activated protein kinase in placental development. Genes Cells 8:847–856

    Article  CAS  PubMed  Google Scholar 

  16. Franco SJ, Rodgers MA, Perrin BJ, Han J, Bennin DA, Critchley DR, Huttenlocher A (2004) Calpain-mediated proteolysis of talin regulates adhesion dynamics. Nat Cell Biol 6:977–983

    Article  CAS  PubMed  Google Scholar 

  17. Serrano K, Devine DV (2004) Vinculin is proteolyzed by calpain during platelet aggregation: 95 kDa cleavage fragment associates with the platelet cytoskeleton. Cell Motil Cytoskelet 58:242–252

    Article  CAS  Google Scholar 

  18. Chan KT, Bennin DA, Huttenlocher A (2010) Regulation of adhesion dynamics by calpain-mediated proteolysis of focal adhesion kinase (FAK). J Biol Chem 285:11418–11426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kishimoto A, Mikawa K, Hashimoto K, Yasuda I, Tanaka S, Tominaga M, Kuroda T, Nishizuka Y (1989) Limited proteolysis of protein kinase C subspecies by calcium-dependent neutral protease (calpain). J Biol Chem 264:4088–4092

    CAS  PubMed  Google Scholar 

  20. Milligan SA, Owens MW, Grisham MB (1996) Inhibition of IκB-α and IκB-β proteolysis by calpain inhibitor I blocks nitric oxide synthesis. Arch Biochem Biophys 335:388–395

    Article  CAS  PubMed  Google Scholar 

  21. Lin YC, Brown K, Siebenlist U (1995) Activation of NF-κB requires proteolysis of the inhibitor IκB-α signal-induced phosphorylation of IκB-α alone does not release active NF-κB. Proc Natl Acad Sci USA 92:552–556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Saito M, Suzuki Y, Yano S, Miyazaki T, Sato Y (2016) Proteolytic inactivation of anti-angiogenic vasohibin-1 by cancer cells. J Biochem 160:227–232

    Article  CAS  PubMed  Google Scholar 

  23. Miyazaki T, Taketomi Y, Takimoto M, Lei XF, Arita S, Kim-Kaneyama JR, Arata S, Ohata H, Ota H, Murakami M, Miyazaki A (2011) m-Calpain induction in vascular endothelial cells on human and mouse atheromas and its roles in VE-cadherin disorganization and atherosclerosis. Circulation 124:2522–2532

    Article  CAS  PubMed  Google Scholar 

  24. Giannotta M, Trani M, Dejana E (2013) VE-cadherin and endothelial adherens junctions: active guardians of vascular integrity. Dev Cell 26:441–454

    Article  CAS  PubMed  Google Scholar 

  25. Miyazaki T, Taketomi Y, Saito Y, Hosono T, Lei XF, Kim-Kaneyama JR, Arata S, Takahashi H, Murakami M, Miyazaki A (2015) Calpastatin counteracts pathological angiogenesis by inhibiting suppressor of cytokine signaling 3 degradation in vascular endothelial cells. Circ Res 116:1170–1181

    Article  CAS  PubMed  Google Scholar 

  26. Sorimachi H, Imajoh-Ohmi S, Emori Y, Kawasaki H, Ohno S, Minami Y, Suzuki K (1989) Molecular cloning of a novel mammalian calcium-dependent protease distinct from both m- and mu-types. Specific expression of the mRNA in skeletal muscle. J Biol Chem 264:20106–20111

    CAS  PubMed  Google Scholar 

  27. Richard I, Roudaut C, Marchand S, Baghdiguian S, Herasse M, Stockholm D, Ono Y, Suel L, Bourg N, Sorimachi H, Lefranc G, Fardeau M, Sébille A, Beckmann JS (2000) Loss of calpain 3 proteolytic activity leads to muscular dystrophy and to apoptosis-associated IkappaBalpha/nuclear factor kappaB pathway perturbation in mice. J Cell Biol 151:1583–1590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ojima K, Kawabata Y, Nakao H, Nakao K, Doi N, Kitamura F, Ono Y, Hata S, Suzuki H, Kawahara H, Bogomolovas J, Witt C, Ottenheijm C, Labeit S, Granzier H, Toyama-Sorimachi N, Sorimachi M, Suzuki K, Maeda T, Abe K, Aiba A, Sorimachi H (2010) Dynamic distribution of muscle-specific calpain in mice has a key role in physical-stress adaptation and is impaired in muscular dystrophy. J Clin Invest 120:2672–2683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Richard I, Broux O, Allamand V, Fougerousse F, Chiannilkulchai N, Bourg N, Brenguier L, Devaud C, Pasturaud P, Roudaut C, Hillaire D, Passos-Bueno M-R, Zatz M, Tischfield JA, Fardeau M, Jackson CE, Cohen D, Beckmann JS (1995) Mutations in the proteolytic enzyme calpain 3 cause limb-girdle muscular dystrophy type 2A. Cell 81:27–40

    Article  CAS  PubMed  Google Scholar 

  30. Ojima K, Ono Y, Ottenheijm C, Hata S, Suzuki H, Granzier H, Sorimachi H (2011) Non-proteolytic functions of calpain-3 in sarcoplasmic reticulum in skeletal muscles. J Mol Biol 407:439–449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hata S, Abe M, Suzuki H, Kitamura F, Toyama-Sorimachi N, Abe K, Sakimura K, Sorimachi H (2010) Calpain 8/nCL-2 and calpain 9/nCL-4 constitute an active protease complex, G-calpain, involved in gastric mucosal defense. PLoS Genet 6:e1001040

    Article  PubMed  PubMed Central  Google Scholar 

  32. Hata S, Kitamura F, Yamaguchi M, Shitara H, Murakami M, Sorimachi H (2016) A gastrointestinal calpain complex, G-calpain, is a heterodimer of CAPN8 and CAPN9, which play catalytic and regulatory roles, respectively. J Biol Chem 291:27313–27322

    Article  CAS  PubMed  Google Scholar 

  33. Tonami K, Hata S, Ojima K, Ono Y, Kurihara Y, Amano T, Sato T, Kawamura Y, Kurihara H, Sorimachi H (2013) Calpain-6 deficiency promotes skeletal muscle development and regeneration. PLoS Genet 9:e1003668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Dear N, Matena K, Vingron M, Boehm T (1997) A new subfamily of vertebrate calpains lacking a calmodulin-like domain: implications for calpain regulation and evolution. Genomics 45:175–184

    Article  CAS  PubMed  Google Scholar 

  35. Tonami K, Kurihara Y, Arima S, Nishiyama K, Uchijima Y, Asano T, Sorimachi H, Kurihara H (2011) Calpain-6, a microtubule-stabilizing protein, regulates Rac1 activity and cell motility through interaction with GEF-H1. J Cell Sci 124:1214–1223

    Article  CAS  PubMed  Google Scholar 

  36. Hong JM, Teitelbaum SL, Kim TH, Ross FP, Kim SY, Kim HJ (2011) Calpain-6, a target molecule of glucocorticoids, regulates osteoclastic bone resorption via cytoskeletal organization and microtubule acetylation. J Bone Miner Res 26:657–665

    Article  CAS  PubMed  Google Scholar 

  37. Johnson JD, Han Z, Otani K, Ye H, Zhang Y, Wu H, Horikawa Y, Misler S, Bell GI, Polonsky KS (2004) RyR2 and calpain-10 delineate a novel apoptosis pathway in pancreatic islets. J Biol Chem 279:24794–24802

    Article  CAS  PubMed  Google Scholar 

  38. Arrington DD, Van Vleet TR, Schnellmann RG (2006) Calpain 10: a mitochondrial calpain and its role in calcium-induced mitochondrial dysfunction. Am J Physiol Cell Physiol 291:C1159–C1171

    Article  CAS  PubMed  Google Scholar 

  39. Sreenan SK, Zhou YP, Otani K, Hansen PA, Currie KP, Pan CY, Lee JP, Ostrega DM, Pugh W, Horikawa Y, Cox NJ, Hanis CL, Burant CF, Fox AP, Bell GI, Polonsky KS (2001) Calpains play a role in insulin secretion and action. Diabetes 50:2013–2020

    Article  CAS  PubMed  Google Scholar 

  40. Lynn S, Evans JC, White C, Frayling TM, Hattersley AT, Turnbull DM, Horikawa Y, Cox NJ, Bell GI, Walker M (2002) Variation in the calpain-10 gene affects blood glucose levels in the British population. Diabetes 51:247–250

    Article  CAS  PubMed  Google Scholar 

  41. Baier LJ, Permana PA, Yang X, Pratley RE, Hanson RL, Shen GQ, Mott D, Knowler WC, Cox NJ, Horikawa Y, Oda N, Bell GI, Bogardus C (2000) A calpain-10 gene polymorphism is associated with reduced muscle mRNA levels and insulin resistance. J Clin Invest 106:R69–R73

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Cheverud JM, Fawcett GL, Jarvis JP, Norgard EA, Pavlicev M, Pletscher LS, Polonsky KS, Ye H, Bell GI, Semenkovich CF (2010) Calpain-10 is a component of the obesity-related quantitative trait locus Adip1. J Lipid Res 51:907–913

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Sugimoto K, Katsuya T, Ishikawa K, Iwashima Y, Yamamoto K, Fu Y, Matsuo A, Motone M, Rakugi H, Ogihara T (2003) UCSNP-43 G/A polymorphism of calpain-10 gene is associated with hypertension and dyslipidemia in Japanese population. Am J Hypertens 16(Suppl 1):A82

    Article  Google Scholar 

  44. Hoffstedt J, Naslund E, Arner P (2002) Calpain-10 gene polymorphism is associated with reduced beta(3)-adrenoceptor function in human fat cells. J Clin Endocrinol Metab 87:3362–3367

    CAS  PubMed  Google Scholar 

  45. Orho-Melander M, Klannemark M, Svensson MK, Ridderstrale M, Lindgren CM, Groop L (2002) Variants in the calpain-10 gene predispose to insulin resistance and elevated free fatty acid levels. Diabetes 51:2658–2664

    Article  CAS  PubMed  Google Scholar 

  46. Ordovas JM (2007) Genetic links between diabetes mellitus and coronary atherosclerosis. Curr Atheroscler Rep 9:204–210

    Article  CAS  PubMed  Google Scholar 

  47. Ross R (1999) Atherosclerosis–an inflammatory disease. N Engl J Med 340:115–126

    Article  CAS  PubMed  Google Scholar 

  48. Weber C, Noels H (2011) Atherosclerosis: current pathogenesis and therapeutic options. Nat Med 17:1410–1422

    Article  CAS  PubMed  Google Scholar 

  49. Miyazaki T, Koya T, Kigawa Y, Oguchi T, Lei XF, Kim-Kaneyama JR, Miyazaki A (2013) Calpain and atherosclerosis. J Atheroscler Thromb 20:228–237

    Article  CAS  PubMed  Google Scholar 

  50. Subramanian V, Uchida HA, Ijaz T, Moorleghen JJ, Howatt DA, Balakrishnan A (2012) Calpain inhibition attenuates angiotensin II-induced abdominal aortic aneurysms and atherosclerosis in low-density lipoprotein receptor-deficient mice. J Cardiovasc Pharmacol 59:66–76

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Howatt DA, Balakrishnan A, Moorleghen JJ, Muniappan L, Rateri DL, Uchida HA, Takano J, Saido TC, Chishti AH, Baud L, Subramanian V (2016) Leukocyte calpain deficiency reduces angiotensin II-induced inflammation and atherosclerosis but not abdominal aortic aneurysms in mice. Arterioscler Thromb Vasc Biol 36:835–845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Miyazaki T, Tonami K, Hata S, Aiuchi T, Ohnishi K, Lei XF, Kim-Kaneyama JR, Takeya M, Itabe H, Sorimachi H, Kurihara H, Miyazaki A (2016) Calpain-6 confers atherogenicity to macrophages by dysregulating pre-mRNA splicing. J Clin Invest 126:3417–3432

    Article  PubMed  PubMed Central  Google Scholar 

  53. Brown MS, Goldstein JL (1983) Lipoprotein metabolism in the macrophage: implications for cholesterol deposition in atherosclerosis. Annu Rev Biochem 52:223–261

    Article  CAS  PubMed  Google Scholar 

  54. Moore KJ, Sheedy FJ, Fisher EA (2013) Macrophages in atherosclerosis: a dynamic balance. Nat Rev Immunol 13:709–721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Chang TY, Chang CC, Ohgami N, Yamauchi Y (2006) Cholesterol sensing, trafficking, and esterification. Annu Rev Cell Dev Biol 22:129–157

    Article  CAS  PubMed  Google Scholar 

  56. Yokoyama S (2005) Assembly of high density lipoprotein by the ABCA1/apolipoprotein pathway. Curr Opin Lipidol 16:269–279

    Article  CAS  PubMed  Google Scholar 

  57. Silvestre-Roig C, de Winther MP, Weber C, Daemen MJ, Lutgens E, Soehnlein O (2014) Atherosclerotic plaque destabilization: mechanisms, models, and therapeutic strategies. Circ Res 114:214–226

    Article  CAS  PubMed  Google Scholar 

  58. Steinberg D, Parthasarathy S, Carew TE, Khoo JC, Witztum JL (1989) Beyond cholesterol. Modifications of low-density lipoprotein that increase its atherogenicity. N Engl J Med 320:915–924

    Article  CAS  PubMed  Google Scholar 

  59. Kunjathoor VV, Febbraio M, Podrez EA, Moore KJ, Andersson L, Koehn S, Rhee JS, Silverstein R, Hoff HF, Freeman MW (2002) Scavenger receptors class A-I/II and CD36 are the principal receptors responsible for the uptake of modified low density lipoprotein leading to lipid loading in macrophages. J Biol Chem 277:49982–49988

    Article  CAS  PubMed  Google Scholar 

  60. Zhao JF, Ching LC, Huang YC, Chen CY, Chiang AN, Kou YR, Shyue SK, Lee TS (2012) Molecular mechanism of curcumin on the suppression of cholesterol accumulation in macrophage foam cells and atherosclerosis. Mol Nutr Food Res 56:691–701

    Article  CAS  PubMed  Google Scholar 

  61. Yang X, Yin M, Yu L, Lu M, Wang H, Tang F, Zhang Y (2016) Simvastatin inhibited oxLDL-induced proatherogenic effects through calpain-1-PPARγ-CD36 pathway. Can J Physiol Pharmacol 94:1336–1343

    Article  CAS  PubMed  Google Scholar 

  62. Kume N, Kita T (2001) Roles of lectin-like oxidized LDL receptor-1 and its soluble forms in atherogenesis. Curr Opin Lipidol 12:419–423

    Article  CAS  PubMed  Google Scholar 

  63. Hayashida K, Kume N, Murase T, Minami M, Nakagawa D, Inada T, Tanaka M, Ueda A, Kominami G, Kambara H, Kimura T, Kita T (2005) Serum soluble lectin-like oxidized low-density lipoprotein receptor-1 levels are elevated in acute coronary syndrome: a novel marker for early diagnosis. Circulation 112:812–818

    Article  CAS  PubMed  Google Scholar 

  64. Murase T, Kume N, Kataoka H, Minami M, Sawamura T, Masaki T, Kita T (2000) Identification of soluble forms of lectin-like oxidized LDL receptor-1. Arterioscler Thromb Vasc Biol 20:715–720

    Article  CAS  PubMed  Google Scholar 

  65. Wang X, Ding Z, Lin J, Guo Z, Mehta JL (2015) LOX-1 in macrophage migration in response to ox-LDL and the involvement of calpains. Biochem Biophys Res Commun 467:135–139

    Article  CAS  PubMed  Google Scholar 

  66. Ding Z, Mizeracki AM, Hu C, Mehta JL (2013) LOX-1 deletion and macrophage trafficking in atherosclerosis. Biochem Biophys Res Commun 440:210–214

    Article  CAS  PubMed  Google Scholar 

  67. Gordon DJ, Rifkind BM (1989) High density lipoprotein—the clinical implications of recent studies. N Engl J Med 321:1311–1316

    Article  CAS  PubMed  Google Scholar 

  68. Ho YK, Brown MS, Goldstein JL (1980) Hydrolysis and excretion of cytoplasmic cholesterol esters by macrophages: stimulation by high density lipoprotein and other agents. J Lipid Res 21:391–398

    CAS  PubMed  Google Scholar 

  69. Wang N, Chen W, Linsel-Nitschke P, Martinez LO, Agerholm-Larsen B, Silver DL, Tall AR (2003) A PEST sequence in ABCA1 regulates degradation by calpain protease and stabilization of ABCA1 by apoA-I. J Clin Invest 111:99–107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Lu R, Arakawa R, Ito-Osumi C, Iwamoto N, Yokoyama S (2008) ApoA-I facilitates ABCA1 recycle/accumulation to cell surface by inhibiting its intracellular degradation and increases HDL generation. Arterioscler Thromb Vasc Biol 28:1820–1824

    Article  CAS  PubMed  Google Scholar 

  71. Okoro EU, Guo Z, Yang H (2016) Akt isoform-dependent regulation of ATP-Binding cassette A1 expression by apolipoprotein E. Biochem Biophys Res Commun 477:123–128

    Article  CAS  PubMed  Google Scholar 

  72. Liu XY, Lu Q, Ouyang XP, Tang SL, Zhao GJ, Lv YC, He PP, Kuang HJ, Tang YY, Fu Y, Zhang DW, Tang CK (2013) Apelin-13 increases expression of ATP-binding cassette transporter A1 via activating protein kinase C α signaling in THP-1 macrophage-derived foam cells. Atherosclerosis 226:398–407

    Article  CAS  PubMed  Google Scholar 

  73. Lu Q, Tang SL, Liu XY, Zhao GJ, Ouyang XP, Lv YC, He PP, Yao F, Chen WJ, Tang YY, Zhang M, Zhang DW, Yin K, Tang CK (2013) Tertiary-butylhydroquinone upregulates expression of ATP-binding cassette transporter A1 via nuclear factor E2-related factor 2/heme oxygenase-1 signaling in THP-1 macrophage-derived foam cells. Circ J 77:2399–2408

    Article  CAS  PubMed  Google Scholar 

  74. Hossain MA, Ngeth S, Chan T, Oda MN, Francis GA (2012) Lipid-bound apolipoproteins in tyrosyl radical-oxidized HDL stabilize ABCA1 like lipid-free apolipoprotein A-I. BMC Biochem 13:1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Wu CA, Tsujita M, Hayashi M, Yokoyama S (2004) Probucol inactivates ABCA1 in the plasma membrane with respect to its mediation of apolipoprotein binding and high density lipoprotein assembly and to its proteolytic degradation. J Biol Chem 279:30168–30174

    Article  CAS  PubMed  Google Scholar 

  76. Arakawa R, Tsujita M, Iwamoto N, Ito-Ohsumi C, Lu R, Wu CA, Shimizu K, Aotsuka T, Kanazawa H, Abe-Dohmae S, Yokoyama S (2009) Pharmacological inhibition of ABCA1 degradation increases HDL biogenesis and exhibits antiatherogenesis. J Lipid Res 50:2299–2305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Wang L, Palme V, Rotter S, Schilcher N, Cukaj M, Wang D, Ladurner A, Heiss EH, Stangl H, Dirsch VM, Atanasov AG (2017) Piperine inhibits ABCA1 degradation and promotes cholesterol efflux from THP-1-derived macrophages. Mol Nutr Food Res 61:1500960

    Article  Google Scholar 

  78. Tanaka N, Abe-Dohmae S, Iwamoto N, Fitzgerald ML, Yokoyama S (2010) Helical apolipoproteins of high-density lipoprotein enhance phagocytosis by stabilizing ATP-binding cassette transporter A7. J Lipid Res 51:2591–2599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Lin CY, Lee TS, Chen CC, Chang CA, Lin YJ, Hsu YP, Ho LT (2011) Endothelin-1 exacerbates lipid accumulation by increasing the protein degradation of the ATP-binding cassette transporter G1 in macrophages. J Cell Physiol 226:2198–2205

    Article  CAS  PubMed  Google Scholar 

  80. Zhao JF, Shyue SK, Lee TS (2016) Excess nitric oxide activates TRPV1-Ca(2+)-calpain signaling and promotes PEST-dependent degradation of liver X receptor α. Int J Biol Sci 12:18–29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Steinbrecher UP, Lougheed M (1992) Scavenger receptor-independent stimulation of cholesterol esterification in macrophages by low density lipoprotein extracted from human aortic intima. Arterioscler Thromb 12:608–625

    Article  CAS  PubMed  Google Scholar 

  82. Manning-Tobin JJ, Moore KJ, Seimon TA, Bell SA, Sharuk M, Alvarez-Leite JI, de Winther MP, Tabas I, Freeman MW (2009) Loss of SR-A and CD36 activity reduces atherosclerotic lesion complexity without abrogating foam cell formation in hyperlipidemic mice. Arterioscler Thromb Vasc Biol 29:19–26

    Article  CAS  PubMed  Google Scholar 

  83. Kruth HS (2011) Receptor-independent fluid-phase pinocytosis mechanisms for induction of foam cell formation with native low-density lipoprotein particles. Curr Opin Lipidol 22:386–393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Buono C, Anzinger JJ, Amar M, Kruth HS (2009) Fluorescent pegylated nanoparticles demonstrate fluid-phase pinocytosis by macrophages in mouse atherosclerotic lesions. J Clin Invest 119:1373–1381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Kruth HS, Jones NL, Huang W, Zhao B, Ishii I, Chang J, Combs CA, Malide D, Zhang WY (2005) Macropinocytosis is the endocytic pathway that mediates macrophage foam cell formation with native low density lipoprotein. J Biol Chem 280:2352–2360

    Article  CAS  PubMed  Google Scholar 

  86. Barthwal MK, Anzinger JJ, Xu Q, Bohnacker T, Wymann MP, Kruth HS (2013) Fluid-phase pinocytosis of native low density lipoprotein promotes murine M-CSF differentiated macrophage foam cell formation. PLoS One 8:e58054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Anzinger JJ, Chang J, Xu Q, Buono C, Li Y, Leyva FJ, Park BC, Greene LE, Kruth HS (2010) Native low-density lipoprotein uptake by macrophage colony-stimulating factor-differentiated human macrophages is mediated by macropinocytosis and micropinocytosis. Arterioscler Thromb Vasc Biol 30:2022–2031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Steckelberg AL, Boehm V, Gromadzka AM, Gehring NH (2012) CWC22 connects pre-mRNA splicing and exon junction complex assembly. Cell Rep 2:454–461

    Article  CAS  PubMed  Google Scholar 

  89. Fujii M, Kawai K, Egami Y, Araki N (2013) Dissecting the roles of Rac1 activation and deactivation in macropinocytosis using microscopic photo-manipulation. Sci Rep 3:2385

    Article  PubMed  PubMed Central  Google Scholar 

  90. Aviram M, Maor I, Keidar S, Hayek T, Oiknine J, Bar-El Y, Adler Z, Kertzman V, Milo S (1995) Lesioned low density lipoprotein in atherosclerotic apolipoprotein E-deficient transgenic mice and in humans is oxidized and aggregated. Biochem Biophys Res Commun 216:501–513

    Article  CAS  PubMed  Google Scholar 

  91. Maor I, Hayek T, Hirsch M, Iancu TC, Aviram M (2000) Macrophage-released proteoglycans enhance LDL aggregation: studies in aorta from apolipoprotein E-deficient mice. Atherosclerosis 150:91–101

    Article  CAS  PubMed  Google Scholar 

  92. Schrijvers DM, De Meyer GR, Herman AG, Martinet W (2007) Phagocytosis in atherosclerosis: molecular mechanisms and implications for plaque progression and stability. Cardiovasc Res 73:470–480

    Article  CAS  PubMed  Google Scholar 

  93. Khoo JC, Miller E, McLoughlin P, Steinberg D (1988) Enhanced macrophage uptake of low density lipoprotein after self-aggregation. Arteriosclerosis 8:348–358

    Article  CAS  PubMed  Google Scholar 

  94. Kruth HS (2002) Sequestration of aggregated low-density lipoproteins by macrophages. Curr Opin Lipidol 13:483–488

    Article  CAS  PubMed  Google Scholar 

  95. Norton RL, Fredericks GJ, Huang Z, Fay JD, Hoffmann FW, Hoffmann PR (2017) Selenoprotein K regulation of palmitoylation and calpain cleavage of ASAP2 is required for efficient FcγR-mediated phagocytosis. J Leukoc Biol 101:439–448

    Article  CAS  PubMed  Google Scholar 

  96. Ortega-Gómez A, Perretti M, Soehnlein O (2013) Resolution of inflammation: an integrated view. EMBO Mol Med 5:661–674

    Article  PubMed  PubMed Central  Google Scholar 

  97. Thorp E, Vaisar T, Subramanian M, Mautner L, Blobel C, Tabas I (2011) Shedding of the Mer tyrosine kinase receptor is mediated by ADAM17 protein through a pathway involving reactive oxygen species, protein kinase Cδ, and p38 mitogen-activated protein kinase (MAPK). J Biol Chem 286:33335–33344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Sather S, Kenyon KD, Lefkowitz JB, Liang X, Varnum BC, Henson PM, Graham DK (2007) A soluble form of the Mer receptor tyrosine kinase inhibits macrophage clearance of apoptotic cells and platelet aggregation. Blood 109:1026–1033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Ravichandran KS (2011) Beginnings of a good apoptotic meal: the find-me and eat-me signaling pathways. Immunity 35:445–455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Driscoll WS, Vaisar T, Tang J, Wilson CL, Raines EW (2013) Macrophage ADAM17 deficiency augments CD36-dependent apoptotic cell uptake and the linked anti-inflammatory phenotype. Circ Res 113:52–61

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported in part by Japan Society for the Promotion of Science KAKENHI Grant Number 26461368 (to A.M.), Japan Society for the Promotion of Science KAKENHI Grant Number 15K09418 (to T.M.), a research grant from Takeda Science Foundation, a research grant from Banyu Life Science Foundation International, a research grant from NOVARTIS Foundation, a research grant from Ono Medical Research Foundation, and the Japan Heart Foundation and Astellas Grant for Research on Atherosclerosis Update, and a research grant from SENSHIN Medical Research Foundation (all to T.M.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takuro Miyazaki.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miyazaki, T., Miyazaki, A. Emerging roles of calpain proteolytic systems in macrophage cholesterol handling. Cell. Mol. Life Sci. 74, 3011–3021 (2017). https://doi.org/10.1007/s00018-017-2528-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-017-2528-7

Keywords

Navigation