Skip to main content

Advertisement

Log in

Inter-organ regulation of adipose tissue browning

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Adaptive thermogenesis is an important component of energy expenditure. Brown adipocytes are best known for their ability to convert chemical energy into heat. Beige cells are brown-like adipocytes that arise in white adipose tissue in response to certain environmental cues to dissipate heat and improve metabolic homeostasis. A large body of intrinsic factors and external signals are critical for the function of beige adipocytes. In this review, we discuss recent advances in our understanding of neuronal, hormonal, and metabolic regulation of the development and activation of beige adipocytes, with a focus on the regulation of beige adipocytes by other organs, tissues, and cells. Understanding the cellular and molecular mechanisms of inter-organ regulation of adipose tissue browning may provide an avenue for combating obesity and associated diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Aherne W, Hull D (1966) Brown adipose tissue and heat production in the newborn infant. J Pathol Bacteriol 91:223–234

    Article  CAS  PubMed  Google Scholar 

  2. Allegra SR, Gmuer C, O’Leary GP Jr (1983) Endocrine activity in a large hibernoma. Hum Pathol 14:1044–1052

    Article  CAS  PubMed  Google Scholar 

  3. Badman MK, Flier JS (2005) The gut and energy balance: visceral allies in the obesity wars. Science 307:1909–1914

    Article  CAS  PubMed  Google Scholar 

  4. Badman MK, Pissios P, Kennedy AR, Koukos G, Flier JS, Maratos-Flier E (2007) Hepatic fibroblast growth factor 21 is regulated by PPARalpha and is a key mediator of hepatic lipid metabolism in ketotic states. Cell Metab 5:426–437

    Article  CAS  PubMed  Google Scholar 

  5. Bal NC, Maurya SK, Sopariwala DH, Sahoo SK, Gupta SC, Shaikh SA, Pant M, Rowland LA, Bombardier E, Goonasekera SA et al (2012) Sarcolipin is a newly identified regulator of muscle-based thermogenesis in mammals. Nat Med 18:1575–1579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bartelt A, Bruns OT, Reimer R, Hohenberg H, Ittrich H, Peldschus K, Kaul MG, Tromsdorf UI, Weller H, Waurisch C et al (2011) Brown adipose tissue activity controls triglyceride clearance. Nat Med 17:200–205

    Article  CAS  PubMed  Google Scholar 

  7. Bartness TJ, Liu Y, Shrestha YB, Ryu V (2014) Neural innervation of white adipose tissue and the control of lipolysis. Front Neuroendocrinol 35:473–493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bassel-Duby R, Olson EN (2006) Signaling pathways in skeletal muscle remodeling. Annu Rev Biochem 75:19–37

    Article  CAS  PubMed  Google Scholar 

  9. Belgardt BF, Okamura T, Bruning JC (2009) Hormone and glucose signalling in POMC and AgRP neurons. J Physiol 587:5305–5314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Berti L, Irmler M, Zdichavsky M, Meile T, Bohm A, Stefan N, Fritsche A, Beckers J, Konigsrainer A, Haring HU et al (2015) Fibroblast growth factor 21 is elevated in metabolically unhealthy obesity and affects lipid deposition, adipogenesis, and adipokine secretion of human abdominal subcutaneous adipocytes. Mol Metab 4:519–527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bordicchia M, Liu D, Amri EZ, Ailhaud G, Dessi-Fulgheri P, Zhang C, Takahashi N, Sarzani R, Collins S (2012) Cardiac natriuretic peptides act via p38 MAPK to induce the brown fat thermogenic program in mouse and human adipocytes. J Clin Investig 122:1022–1036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bostrom P, Wu J, Jedrychowski MP, Korde A, Ye L, Lo JC, Rasbach KA, Bostrom EA, Choi JH, Long JZ et al (2012) A PGC1-alpha-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature 481:463–468

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Brestoff JR, Kim BS, Saenz SA, Stine RR, Monticelli LA, Sonnenberg GF, Thome JJ, Farber DL, Lutfy K, Seale P et al (2015) Group 2 innate lymphoid cells promote beiging of white adipose tissue and limit obesity. Nature 519:242–246

    Article  CAS  PubMed  Google Scholar 

  14. Brito NA, Brito MN, Bartness TJ (2008) Differential sympathetic drive to adipose tissues after food deprivation, cold exposure or glucoprivation. American journal of physiology. Regul Integr Comp Physiol 294:R1445–R1452

    Article  CAS  Google Scholar 

  15. Cannon B, Nedergaard J (2010) Metabolic consequences of the presence or absence of the thermogenic capacity of brown adipose tissue in mice (and probably in humans). Int J Obes (Lond) 34(Suppl 1):S7–S16

    Article  CAS  Google Scholar 

  16. Cao L, Choi EY, Liu X, Martin A, Wang C, Xu X, During MJ (2011) White to brown fat phenotypic switch induced by genetic and environmental activation of a hypothalamic-adipocyte axis. Cell Metab 14:324–338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Cao L, Jiao X, Zuzga DS, Liu Y, Fong DM, Young D, During MJ (2004) VEGF links hippocampal activity with neurogenesis, learning and memory. Nat Genet 36:827–835

    Article  CAS  PubMed  Google Scholar 

  18. Cao Y (2010) Adipose tissue angiogenesis as a therapeutic target for obesity and metabolic diseases. Nat Rev Drug Discov 9:107–115

    Article  CAS  PubMed  Google Scholar 

  19. Carriere A, Jeanson Y, Berger-Muller S, Andre M, Chenouard V, Arnaud E, Barreau C, Walther R, Galinier A, Wdziekonski B et al (2014) Browning of white adipose cells by intermediate metabolites: an adaptive mechanism to alleviate redox pressure. Diabetes 63:3253–3265

    Article  CAS  PubMed  Google Scholar 

  20. Chevalier C, Stojanovic O, Colin DJ, Suarez-Zamorano N, Tarallo V, Veyrat-Durebex C, Rigo D, Fabbiano S, Stevanovic A, Hagemann S et al (2015) Gut microbiota orchestrates energy homeostasis during cold. Cell 163:1360–1374

    Article  CAS  PubMed  Google Scholar 

  21. Chi J, Cohen P (2016) The multifaceted roles of PRDM16: adipose biology and beyond. Trends Endocrinol Metab 27:11–23

    Article  CAS  PubMed  Google Scholar 

  22. Chondronikola M, Volpi E, Borsheim E, Porter C, Annamalai P, Enerback S, Lidell ME, Saraf MK, Labbe SM, Hurren NM et al (2014) Brown adipose tissue improves whole-body glucose homeostasis and insulin sensitivity in humans. Diabetes 63:4089–4099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Cinti S (2001) The adipose organ: morphological perspectives of adipose tissues. Proc Nutr Soc 60:319–328

    Article  CAS  PubMed  Google Scholar 

  24. Cohen P, Levy JD, Zhang Y, Frontini A, Kolodin DP, Svensson KJ, Lo JC, Zeng X, Ye L, Khandekar MJ et al (2014) Ablation of PRDM16 and beige adipose causes metabolic dysfunction and a subcutaneous to visceral fat switch. Cell 156:304–316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Collins S (2011) Beta-adrenoceptor signaling networks in adipocytes for recruiting stored fat and energy expenditure. Frontiers in endocrinology 2:102

    Article  PubMed  Google Scholar 

  26. Commins SP, Watson PM, Levin N, Beiler RJ, Gettys TW (2000) Central leptin regulates the UCP1 and ob genes in brown and white adipose tissue via different beta-adrenoceptor subtypes. J Biol Chem 275:33059–33067

    Article  CAS  PubMed  Google Scholar 

  27. Cypess AM, White AP, Vernochet C, Schulz TJ, Xue R, Sass CA, Huang TL, Roberts-Toler C, Weiner LS, Sze C et al (2013) Anatomical localization, gene expression profiling and functional characterization of adult human neck brown fat. Nat Med 19:635–639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Dempersmier J, Sambeat A, Gulyaeva O, Paul SM, Hudak CS, Raposo HF, Kwan HY, Kang C, Wong RH, Sul HS (2015) Cold-inducible Zfp516 activates UCP1 transcription to promote browning of white fat and development of brown fat. Mol Cell 57:235–246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Diaz MB, Herzig S, Vegiopoulos A (2014) Thermogenic adipocytes: from cells to physiology and medicine. Metab Clin Exp 63:1238–1249

    Article  CAS  PubMed  Google Scholar 

  30. Dietrich MO, Horvath TL (2013) Hypothalamic control of energy balance: insights into the role of synaptic plasticity. Trends Neurosci 36:65–73

    Article  CAS  PubMed  Google Scholar 

  31. Dodd GT, Decherf S, Loh K, Simonds SE, Wiede F, Balland E, Merry TL, Munzberg H, Zhang ZY, Kahn BB et al (2015) Leptin and insulin act on POMC neurons to promote the browning of white fat. Cell 160:88–104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. During MJ, Liu X, Huang W, Magee D, Slater A, McMurphy T, Wang C, Cao L (2015) Adipose VEGF links the white-to-brown fat switch with environmental, genetic, and pharmacological stimuli in male mice. Endocrinology 156:2059–2073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Elias I, Franckhauser S, Ferre T, Vila L, Tafuro S, Munoz S, Roca C, Ramos D, Pujol A, Riu E et al (2012) Adipose tissue overexpression of vascular endothelial growth factor protects against diet-induced obesity and insulin resistance. Diabetes 61:1801–1813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Emanuelli B, Vienberg SG, Smyth G, Cheng C, Stanford KI, Arumugam M, Michael MD, Adams AC, Kharitonenkov A, Kahn CR (2014) Interplay between FGF21 and insulin action in the liver regulates metabolism. J Clin Investig 124:515–527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Emont MP, Yu H, Wu J (2015) Transcriptional control and hormonal response of thermogenic fat. J Endocrinol 225:R35–R47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Etnier JL, Wideman L, Labban JD, Piepmeier A, Pendleton DM, Dvorak K, Becofsky K (2016) The effects of acute exercise on memory and brain-derived neurotrophic factor (BDNF). J Sport Exerc Psychol 29:1–33

    Google Scholar 

  37. Fang S, Suh JM, Reilly SM, Yu E, Osborn O, Lackey D, Yoshihara E, Perino A, Jacinto S, Lukasheva Y et al (2015) Intestinal FXR agonism promotes adipose tissue browning and reduces obesity and insulin resistance. Nat Med 21:159–165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Fang S, Tsang S, Jones R, Ponugoti B, Yoon H, Wu SY, Chiang CM, Willson TM, Kemper JK (2008) The p300 acetylase is critical for ligand-activated farnesoid X receptor (FXR) induction of SHP. J Biol Chem 283:35086–35095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Fearon KC, Glass DJ, Guttridge DC (2012) Cancer cachexia: mediators, signaling, and metabolic pathways. Cell Metab 16:153–166

    Article  CAS  PubMed  Google Scholar 

  40. Fisher FM, Kleiner S, Douris N, Fox EC, Mepani RJ, Verdeguer F, Wu J, Kharitonenkov A, Flier JS, Maratos-Flier E et al (2012) FGF21 regulates PGC-1alpha and browning of white adipose tissues in adaptive thermogenesis. Genes Dev 26:271–281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Frontini A, Vitali A, Perugini J, Murano I, Romiti C, Ricquier D, Guerrieri M, Cinti S (2013) White-to-brown transdifferentiation of omental adipocytes in patients affected by pheochromocytoma. Biochim Biophys Acta 1831:950–959

    Article  CAS  PubMed  Google Scholar 

  42. Garcia-Alonso V, Lopez-Vicario C, Titos E, Moran-Salvador E, Gonzalez-Periz A, Rius B, Parrizas M, Werz O, Arroyo V, Claria J (2013) Coordinate functional regulation between microsomal prostaglandin E synthase-1 (mPGES-1) and peroxisome proliferator-activated receptor gamma (PPARgamma) in the conversion of white-to-brown adipocytes. J Biol Chem 288:28230–28242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Gnad T, Scheibler S, von Kugelgen I, Scheele C, Kilic A, Glode A, Hoffmann LS, Reverte-Salisa L, Horn P, Mutlu S et al (2014) Adenosine activates brown adipose tissue and recruits beige adipocytes via A2A receptors. Nature 516:395–399

    Article  CAS  PubMed  Google Scholar 

  44. Granneman JG, Li P, Zhu Z, Lu Y (2005) Metabolic and cellular plasticity in white adipose tissue I: effects of beta3-adrenergic receptor activation. Am J Physiol Endocrinol Metab 289:E608–E616

    Article  CAS  PubMed  Google Scholar 

  45. Halim TY, Steer CA, Matha L, Gold MJ, Martinez-Gonzalez I, McNagny KM, McKenzie AN, Takei F (2014) Group 2 innate lymphoid cells are critical for the initiation of adaptive T helper 2 cell-mediated allergic lung inflammation. Immunity 40:425–435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Harlan SM, Morgan DA, Agassandian K, Guo DF, Cassell MD, Sigmund CD, Mark AL, Rahmouni K (2011) Ablation of the leptin receptor in the hypothalamic arcuate nucleus abrogates leptin-induced sympathetic activation. Circ Res 108:808–812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Harms M, Seale P (2013) Brown and beige fat: development, function and therapeutic potential. Nat Med 19:1252–1263

    Article  CAS  PubMed  Google Scholar 

  48. Hausman GJ, Richardson RL (2004) Adipose tissue angiogenesis. J Anim Sci 82:925–934

    Article  CAS  PubMed  Google Scholar 

  49. Heaton JM (1972) The distribution of brown adipose tissue in the human. J Anat 112:35–39

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Himms-Hagen J, Melnyk A, Zingaretti MC, Ceresi E, Barbatelli G, Cinti S (2000) Multilocular fat cells in WAT of CL-316243-treated rats derive directly from white adipocytes. Am J Physiol Cell Physiol 279:C670–C681

    CAS  PubMed  Google Scholar 

  51. Huh JY, Panagiotou G, Mougios V, Brinkoetter M, Vamvini MT, Schneider BE, Mantzoros CS (2012) FNDC5 and irisin in humans: I. Predictors of circulating concentrations in serum and plasma and II. mRNA expression and circulating concentrations in response to weight loss and exercise. Metab Clin Exp 61:1725–1738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Ieraci A, Madaio AI, Mallei A, Lee FS, Popoli M (2016) Brain derived neurotrophic factor Val66Met human polymorphism impairs the beneficial exercise-induced neurobiological changes in mice. Neuropsychopharmacology 41:3070–3079

    Article  CAS  PubMed  Google Scholar 

  53. Inagaki T, Dutchak P, Zhao G, Ding X, Gautron L, Parameswara V, Li Y, Goetz R, Mohammadi M, Esser V et al (2007) Endocrine regulation of the fasting response by PPARalpha-mediated induction of fibroblast growth factor 21. Cell Metab 5:415–425

    Article  CAS  PubMed  Google Scholar 

  54. Jedrychowski MP, Wrann CD, Paulo JA, Gerber KK, Szpyt J, Robinson MM, Nair KS, Gygi SP, Spiegelman BM (2015) Detection and quantitation of circulating human irisin by tandem mass spectrometry. Cell Metab 22:734–740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Jespersen NZ, Larsen TJ, Peijs L, Daugaard S, Homoe P, Loft A, de Jong J, Mathur N, Cannon B, Nedergaard J et al (2013) A classical brown adipose tissue mRNA signature partly overlaps with brite in the supraclavicular region of adult humans. Cell Metab 17:798–805

    Article  CAS  PubMed  Google Scholar 

  56. Kajimura S, Seale P, Tomaru T, Erdjument-Bromage H, Cooper MP, Ruas JL, Chin S, Tempst P, Lazar MA, Spiegelman BM (2008) Regulation of the brown and white fat gene programs through a PRDM16/CtBP transcriptional complex. Genes Dev 22:1397–1409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kajimura S, Spiegelman BM, Seale P (2015) Brown and beige fat: physiological roles beyond heat generation. Cell Metab 22:546–559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Kazak L, Chouchani ET, Jedrychowski MP, Erickson BK, Shinoda K, Cohen P, Vetrivelan R, Lu GZ, Laznik-Bogoslavski D, Hasenfuss SC et al (2015) A creatine-driven substrate cycle enhances energy expenditure and thermogenesis in beige fat. Cell 163:643–655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Kemper JK, Xiao Z, Ponugoti B, Miao J, Fang S, Kanamaluru D, Tsang S, Wu SY, Chiang CM, Veenstra TD (2009) FXR acetylation is normally dynamically regulated by p300 and SIRT1 but constitutively elevated in metabolic disease states. Cell Metab 10:392–404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Kir S, White JP, Kleiner S, Kazak L, Cohen P, Baracos VE, Spiegelman BM (2014) Tumour-derived PTH-related protein triggers adipose tissue browning and cancer cachexia. Nature 513:100–104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Kleiner S, Mepani RJ, Laznik D, Ye L, Jurczak MJ, Jornayvaz FR, Estall JL, Chatterjee Bhowmick D, Shulman GI, Spiegelman BM (2012) Development of insulin resistance in mice lacking PGC-1alpha in adipose tissues. Proc Natl Acad Sci USA 109:9635–9640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Knudsen JG, Murholm M, Carey AL, Bienso RS, Basse AL, Allen TL, Hidalgo J, Kingwell BA, Febbraio MA, Hansen JB et al (2014) Role of IL-6 in exercise training- and cold-induced UCP1 expression in subcutaneous white adipose tissue. PLoS One 9:e84910

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Koncarevic A, Kajimura S, Cornwall-Brady M, Andreucci A, Pullen A, Sako D, Kumar R, Grinberg AV, Liharska K, Ucran JA et al (2012) A novel therapeutic approach to treating obesity through modulation of TGFbeta signaling. Endocrinology 153:3133–3146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Koren O, Goodrich JK, Cullender TC, Spor A, Laitinen K, Backhed HK, Gonzalez A, Werner JJ, Angenent LT, Knight R et al (2012) Host remodeling of the gut microbiome and metabolic changes during pregnancy. Cell 150:470–480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Krauss S, Zhang CY, Lowell BB (2005) The mitochondrial uncoupling-protein homologues. Nat Rev Mol Cell Biol 6:248–261

    Article  CAS  PubMed  Google Scholar 

  66. Lee FY, Lee H, Hubbert ML, Edwards PA, Zhang Y (2006) FXR, a multipurpose nuclear receptor. Trends Biochem Sci 31:572–580

    Article  CAS  PubMed  Google Scholar 

  67. Lee MW, Odegaard JI, Mukundan L, Qiu Y, Molofsky AB, Nussbaum JC, Yun K, Locksley RM, Chawla A (2015) Activated type 2 innate lymphoid cells regulate beige fat biogenesis. Cell 160:74–87

    Article  CAS  PubMed  Google Scholar 

  68. Lee P, Smith S, Linderman J, Courville AB, Brychta RJ, Dieckmann W, Werner CD, Chen KY, Celi FS (2014) Temperature-acclimated brown adipose tissue modulates insulin sensitivity in humans. Diabetes 63:3686–3698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Lee YH, Petkova AP, Konkar AA, Granneman JG (2015) Cellular origins of cold-induced brown adipocytes in adult mice. FASEB J 29:286–299

    Article  CAS  PubMed  Google Scholar 

  70. Lee YH, Petkova AP, Mottillo EP, Granneman JG (2012) In vivo identification of bipotential adipocyte progenitors recruited by beta3-adrenoceptor activation and high-fat feeding. Cell Metab 15:480–491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Lidell ME, Betz MJ, Dahlqvist Leinhard O, Heglind M, Elander L, Slawik M, Mussack T, Nilsson D, Romu T, Nuutila P et al (2013) Evidence for two types of brown adipose tissue in humans. Nat Med 19:631–634

    Article  CAS  PubMed  Google Scholar 

  72. Liou AP, Paziuk M, Luevano JM Jr, Machineni S, Turnbaugh PJ, Kaplan LM (2013) Conserved shifts in the gut microbiota due to gastric bypass reduce host weight and adiposity. Sci Transl Med 5:178ra141

    Article  CAS  Google Scholar 

  73. Long JZ, Svensson KJ, Tsai L, Zeng X, Roh HC, Kong X, Rao RR, Lou J, Lokurkar I, Baur W et al (2014) A smooth muscle-like origin for beige adipocytes. Cell Metab 19:810–820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Madsen L, Pedersen LM, Lillefosse HH, Fjaere E, Bronstad I, Hao Q, Petersen RK, Hallenborg P, Ma T, De Matteis R et al (2010) UCP1 induction during recruitment of brown adipocytes in white adipose tissue is dependent on cyclooxygenase activity. PLoS One 5:e11391

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Manieri M, Murano I, Fianchini A, Brunelli A, Cinti S (2010) Morphological and immunohistochemical features of brown adipocytes and preadipocytes in a case of human hibernoma. Nutr Metab Cardiovasc Dis 20:567–574

    Article  CAS  PubMed  Google Scholar 

  76. McDonald ME, Li C, Bian H, Smith BD, Layne MD, Farmer SR (2015) Myocardin-related transcription factor A regulates conversion of progenitors to beige adipocytes. Cell 160:105–118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. McGlashon JM, Gorecki MC, Kozlowski AE, Thirnbeck CK, Markan KR, Leslie KL, Kotas ME, Potthoff MJ, Richerson GB, Gillum MP (2015) Central serotonergic neurons activate and recruit thermogenic brown and beige fat and regulate glucose and lipid homeostasis. Cell Metab 21:692–705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Miehle K, Ebert T, Kralisch S, Hoffmann A, Kratzsch J, Schlogl H, Stumvoll M, Fasshauer M (2016) Serum concentrations of fibroblast growth factor 21 are elevated in patients with congenital or acquired lipodystrophy. Cytokine 83:239–244

    Article  CAS  PubMed  Google Scholar 

  79. Molofsky AB, Nussbaum JC, Liang HE, Van Dyken SJ, Cheng LE, Mohapatra A, Chawla A, Locksley RM (2013) Innate lymphoid type 2 cells sustain visceral adipose tissue eosinophils and alternatively activated macrophages. J Exp Med 210:535–549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Monteiro BM, Moreira FA, Massensini AR, Moraes MF, Pereira GS (2014) Enriched environment increases neurogenesis and improves social memory persistence in socially isolated adult mice. Hippocampus 24:239–248

    Article  PubMed  Google Scholar 

  81. Moro K, Yamada T, Tanabe M, Takeuchi T, Ikawa T, Kawamoto H, Furusawa J, Ohtani M, Fujii H, Koyasu S (2010) Innate production of T(H)2 cytokines by adipose tissue-associated c-Kit(+)Sca-1(+) lymphoid cells. Nature 463:540–544

    Article  CAS  PubMed  Google Scholar 

  82. Morrison SF, Madden CJ, Tupone D (2014) Central neural regulation of brown adipose tissue thermogenesis and energy expenditure. Cell Metab 19:741–756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Murano I, Barbatelli G, Giordano A, Cinti S (2009) Noradrenergic parenchymal nerve fiber branching after cold acclimatisation correlates with brown adipocyte density in mouse adipose organ. J Anat 214:171–178

    Article  CAS  PubMed  Google Scholar 

  84. Muzik O, Mangner TJ, Granneman JG (2012) Assessment of oxidative metabolism in brown fat using PET imaging. Front Endocrinol 3:15

    Article  CAS  Google Scholar 

  85. Neill DR, Wong SH, Bellosi A, Flynn RJ, Daly M, Langford TK, Bucks C, Kane CM, Fallon PG, Pannell R et al (2010) Nuocytes represent a new innate effector leukocyte that mediates type-2 immunity. Nature 464:1367–1370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Neinast MD, Frank AP, Zechner JF, Li Q, Vishvanath L, Palmer BF, Aguirre V, Gupta RK, Clegg DJ (2015) Activation of natriuretic peptides and the sympathetic nervous system following Roux-en-Y gastric bypass is associated with gonadal adipose tissues browning. Mol Metab 4:427–436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Nguyen KD, Qiu Y, Cui X, Goh YP, Mwangi J, David T, Mukundan L, Brombacher F, Locksley RM, Chawla A (2011) Alternatively activated macrophages produce catecholamines to sustain adaptive thermogenesis. Nature 480:104–108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Ohno H, Shinoda K, Ohyama K, Sharp LZ, Kajimura S (2013) EHMT1 controls brown adipose cell fate and thermogenesis through the PRDM16 complex. Nature 504:163–167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Ohno H, Shinoda K, Spiegelman BM, Kajimura S (2012) PPARgamma agonists induce a white-to-brown fat conversion through stabilization of PRDM16 protein. Cell Metab 15:395–404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Petrovic N, Walden TB, Shabalina IG, Timmons JA, Cannon B, Nedergaard J (2010) Chronic peroxisome proliferator-activated receptor gamma (PPARgamma) activation of epididymally derived white adipocyte cultures reveals a population of thermogenically competent, UCP1-containing adipocytes molecularly distinct from classic brown adipocytes. J Biol Chem 285:7153–7164

    Article  CAS  PubMed  Google Scholar 

  91. Petruzzelli M, Schweiger M, Schreiber R, Campos-Olivas R, Tsoli M, Allen J, Swarbrick M, Rose-John S, Rincon M, Robertson G et al (2014) A switch from white to brown fat increases energy expenditure in cancer-associated cachexia. Cell Metab 20:433–447

    Article  CAS  PubMed  Google Scholar 

  92. Pfeifer A, Hoffmann LS (2015) Brown, beige, and white: the new color code of fat and its pharmacological implications. Annu Rev Pharmacol Toxicol 55:207–227

    Article  CAS  PubMed  Google Scholar 

  93. Plum L, Rother E, Munzberg H, Wunderlich FT, Morgan DA, Hampel B, Shanabrough M, Janoschek R, Konner AC, Alber J et al (2007) Enhanced leptin-stimulated Pi3k activation in the CNS promotes white adipose tissue transdifferentiation. Cell Metab 6:431–445

    Article  CAS  PubMed  Google Scholar 

  94. Porter C, Chondronikola M, Sidossis LS (2015) The therapeutic potential of brown adipocytes in humans. Front Endocrinol 6:156

    Article  Google Scholar 

  95. Qian SW, Tang Y, Li X, Liu Y, Zhang YY, Huang HY, Xue RD, Yu HY, Guo L, Gao HD et al (2013) BMP4-mediated brown fat-like changes in white adipose tissue alter glucose and energy homeostasis. Proc Natl Acad Sci USA 110:E798–E807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Qiu Y, Nguyen KD, Odegaard JI, Cui X, Tian X, Locksley RM, Palmiter RD, Chawla A (2014) Eosinophils and type 2 cytokine signaling in macrophages orchestrate development of functional beige fat. Cell 157:1292–1308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Rachid B, van de Sande-Lee S, Rodovalho S, Folli F, Beltramini GC, Morari J, Amorim BJ, Pedro T, Ramalho AF, Bombassaro B et al (2015) Distinct regulation of hypothalamic and brown/beige adipose tissue activities in human obesity. Int J Obes (Lond) 39:1515–1522

    Article  CAS  Google Scholar 

  98. Rao RR, Long JZ, White JP, Svensson KJ, Lou J, Lokurkar I, Jedrychowski MP, Ruas JL, Wrann CD, Lo JC et al (2014) Meteorin-like is a hormone that regulates immune-adipose interactions to increase beige fat thermogenesis. Cell 157:1279–1291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Rezai-Zadeh K, Munzberg H (2013) Integration of sensory information via central thermoregulatory leptin targets. Physiol Behav 121:49–55

    Article  CAS  PubMed  Google Scholar 

  100. Ribeiro MO, Lebrun FL, Christoffolete MA, Branco M, Crescenzi A, Carvalho SD, Negrao N, Bianco AC (2000) Evidence of UCP1-independent regulation of norepinephrine-induced thermogenesis in brown fat. Am J Physiol Endocrinol Metab 279:E314–E322

    CAS  PubMed  Google Scholar 

  101. Ridaura VK, Faith JJ, Rey FE, Cheng J, Duncan AE, Kau AL, Griffin NW, Lombard V, Henrissat B, Bain JR et al (2013) Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science 341:1241214

    Article  PubMed  CAS  Google Scholar 

  102. Roberts LD, Bostrom P, O’Sullivan JF, Schinzel RT, Lewis GD, Dejam A, Lee YK, Palma MJ, Calhoun S, Georgiadi A et al (2014) Beta-aminoisobutyric acid induces browning of white fat and hepatic beta-oxidation and is inversely correlated with cardiometabolic risk factors. Cell Metab 19:96–108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Romanovsky AA (2007) Thermoregulation: some concepts have changed. Functional architecture of the thermoregulatory system. Am J Physiol Regul Integr Comp Physiol 292:R37–R46

    Article  CAS  PubMed  Google Scholar 

  104. Rosenwald M, Perdikari A, Rulicke T, Wolfrum C (2013) Bi-directional interconversion of brite and white adipocytes. Nat Cell Biol 15:659–667

    Article  CAS  PubMed  Google Scholar 

  105. Ruan HB, Dietrich MO, Liu ZW, Zimmer MR, Li MD, Singh JP, Zhang K, Yin R, Wu J, Horvath TL et al (2014) O-GlcNAc transferase enables AgRP neurons to suppress browning of white fat. Cell 159:306–317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Sako D, Grinberg AV, Liu J, Davies MV, Castonguay R, Maniatis S, Andreucci AJ, Pobre EG, Tomkinson KN, Monnell TE et al (2010) Characterization of the ligand binding functionality of the extracellular domain of activin receptor type IIb. J Biol Chem 285:21037–21048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Schulz TJ, Huang P, Huang TL, Xue R, McDougall LE, Townsend KL, Cypess AM, Mishina Y, Gussoni E, Tseng YH (2013) Brown-fat paucity due to impaired BMP signalling induces compensatory browning of white fat. Nature 495:379–383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Schulz TJ, Huang TL, Tran TT, Zhang H, Townsend KL, Shadrach JL, Cerletti M, McDougall LE, Giorgadze N, Tchkonia T et al (2011) Identification of inducible brown adipocyte progenitors residing in skeletal muscle and white fat. Proc Natl Acad Sci USA 108:143–148

    Article  CAS  PubMed  Google Scholar 

  109. Seale P, Bjork B, Yang W, Kajimura S, Chin S, Kuang S, Scime A, Devarakonda S, Conroe HM, Erdjument-Bromage H et al (2008) PRDM16 controls a brown fat/skeletal muscle switch. Nature 454:961–967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Seale P, Conroe HM, Estall J, Kajimura S, Frontini A, Ishibashi J, Cohen P, Cinti S, Spiegelman BM (2011) Prdm16 determines the thermogenic program of subcutaneous white adipose tissue in mice. J Clin Investig 121:96–105

    Article  CAS  PubMed  Google Scholar 

  111. Sell H, Berger JP, Samson P, Castriota G, Lalonde J, Deshaies Y, Richard D (2004) Peroxisome proliferator-activated receptor gamma agonism increases the capacity for sympathetically mediated thermogenesis in lean and ob/ob mice. Endocrinology 145:3925–3934

    Article  CAS  PubMed  Google Scholar 

  112. Sharp LZ, Shinoda K, Ohno H, Scheel DW, Tomoda E, Ruiz L, Hu H, Wang L, Pavlova Z, Gilsanz V et al (2012) Human BAT possesses molecular signatures that resemble beige/brite cells. PLoS One 7:e49452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Shi YC, Lau J, Lin Z, Zhang H, Zhai L, Sperk G, Heilbronn R, Mietzsch M, Weger S, Huang XF et al (2013) Arcuate NPY controls sympathetic output and BAT function via a relay of tyrosine hydroxylase neurons in the PVN. Cell Metab 17:236–248

    Article  CAS  PubMed  Google Scholar 

  114. Shinoda K, Luijten IH, Hasegawa Y, Hong H, Sonne SB, Kim M, Xue R, Chondronikola M, Cypess AM, Tseng YH et al (2015) Genetic and functional characterization of clonally derived adult human brown adipocytes. Nat Med 21:389–394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Stanford KI, Middelbeek RJ, Townsend KL, Lee MY, Takahashi H, So K, Hitchcox KM, Markan KR, Hellbach K, Hirshman MF et al (2015) A novel role for subcutaneous adipose tissue in exercise-induced improvements in glucose homeostasis. Diabetes 64:2002–2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Steensberg A, van Hall G, Osada T, Sacchetti M, Saltin B, Klarlund Pedersen B (2000) Production of interleukin-6 in contracting human skeletal muscles can account for the exercise-induced increase in plasma interleukin-6. J Physiol 529(Pt 1):237–242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Stefanidis A, Wiedmann NM, Adler ES, Oldfield BJ (2014) Hypothalamic control of adipose tissue. Best Pract Res Clin Endocrinol Metab 28:685–701

    Article  CAS  PubMed  Google Scholar 

  118. Suarez-Zamorano N, Fabbiano S, Chevalier C, Stojanovic O, Colin DJ, Stevanovic A, Veyrat-Durebex C, Tarallo V, Rigo D, Germain S et al (2015) Microbiota depletion promotes browning of white adipose tissue and reduces obesity. Nat Med 21:1497–1501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Sun K, Wernstedt Asterholm I, Kusminski CM, Bueno AC, Wang ZV, Pollard JW, Brekken RA, Scherer PE (2012) Dichotomous effects of VEGF-A on adipose tissue dysfunction. Proc Natl Acad Sci USA 109:5874–5879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Torriani M, Srinivasa S, Fitch KV, Thomou T, Wong K, Petrow E, Kahn CR, Cypess AM, Grinspoon SK (2016) Dysfunctional subcutaneous fat with reduced dicer and brown adipose tissue gene expression in HIV-infected patients. J Clin Endocrinol Metab 101:1225–1234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Tsai CL, Pan CY, Chen FC, Wang CH, Chou FY (2016) Effects of acute aerobic exercise on a task-switching protocol and brain-derived neurotrophic factor concentrations in young adults with different levels of cardiorespiratory fitness. Exp Physiol 101:836–850

    Article  CAS  PubMed  Google Scholar 

  122. van Marken Lichtenbelt WD, Schrauwen P (2011) Implications of nonshivering thermogenesis for energy balance regulation in humans. Am J Physiol Regul Integr Comp Physiol 301:R285–R296

    Article  PubMed  CAS  Google Scholar 

  123. Vegiopoulos A, Muller-Decker K, Strzoda D, Schmitt I, Chichelnitskiy E, Ostertag A, Berriel Diaz M, Rozman J, Hrabe de Angelis M, Nusing RM et al (2010) Cyclooxygenase-2 controls energy homeostasis in mice by de novo recruitment of brown adipocytes. Science 328:1158–1161

    Article  CAS  PubMed  Google Scholar 

  124. Virtanen KA, Lidell ME, Orava J, Heglind M, Westergren R, Niemi T, Taittonen M, Laine J, Savisto NJ, Enerback S et al (2009) Functional brown adipose tissue in healthy adults. N Engl J Med 360:1518–1525

    Article  CAS  PubMed  Google Scholar 

  125. Vitali A, Murano I, Zingaretti MC, Frontini A, Ricquier D, Cinti S (2012) The adipose organ of obesity-prone C57BL/6J mice is composed of mixed white and brown adipocytes. J Lipid Res 53:619–629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Wang C, Bomberg E, Billington C, Levine A, Kotz CM (2007) Brain-derived neurotrophic factor in the hypothalamic paraventricular nucleus increases energy expenditure by elevating metabolic rate. Am J Physiol Regul Integr Comp Physiol 293:R992–R1002

    Article  CAS  PubMed  Google Scholar 

  127. Wang C, Bomberg E, Billington CJ, Levine AS, Kotz CM (2010) Brain-derived neurotrophic factor (BDNF) in the hypothalamic ventromedial nucleus increases energy expenditure. Brain Res 1336:66–77

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Wang QA, Tao C, Gupta RK, Scherer PE (2013) Tracking adipogenesis during white adipose tissue development, expansion and regeneration. Nat Med 19:1338–1344

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  129. Wei W, Dutchak PA, Wang X, Ding X, Wang X, Bookout AL, Goetz R, Mohammadi M, Gerard RD, Dechow PC et al (2012) Fibroblast growth factor 21 promotes bone loss by potentiating the effects of peroxisome proliferator-activated receptor gamma. Proc Natl Acad Sci USA 109:3143–3148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Wilson-Fritch L, Nicoloro S, Chouinard M, Lazar MA, Chui PC, Leszyk J, Straubhaar J, Czech MP, Corvera S (2004) Mitochondrial remodeling in adipose tissue associated with obesity and treatment with rosiglitazone. J Clin Investig 114:1281–1289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Wu J, Bostrom P, Sparks LM, Ye L, Choi JH, Giang AH, Khandekar M, Virtanen KA, Nuutila P, Schaart G et al (2012) Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human. Cell 150:366–376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Wu J, Cohen P, Spiegelman BM (2013) Adaptive thermogenesis in adipocytes: is beige the new brown? Genes Dev 27:234–250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Wu J, Jun H, McDermott JR (2015) Formation and activation of thermogenic fat. Trends Genet 31:232–238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Xu X, Ying Z, Cai M, Xu Z, Li Y, Jiang SY, Tzan K, Wang A, Parthasarathy S, He G et al (2011) Exercise ameliorates high-fat diet-induced metabolic and vascular dysfunction, and increases adipocyte progenitor cell population in brown adipose tissue. Am J Physiol Regul Integr Comparative Physiol 300:R1115–R1125

    Article  CAS  Google Scholar 

  135. Xue Y, Petrovic N, Cao R, Larsson O, Lim S, Chen S, Feldmann HM, Liang Z, Zhu Z, Nedergaard J et al (2009) Hypoxia-independent angiogenesis in adipose tissues during cold acclimation. Cell Metab 9:99–109

    Article  CAS  PubMed  Google Scholar 

  136. Yang X, Ruan HB (2015) Neuronal control of adaptive thermogenesis. Front Endocrinol 6:149

    Article  Google Scholar 

  137. Young P, Arch JR, Ashwell M (1984) Brown adipose tissue in the parametrial fat pad of the mouse. FEBS Lett 167:10–14

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Hai-Bin Ruan for critical reading of the manuscript and all members of the Yang laboratory for stimulating discussions. This work was supported by National Institutes of Health (R01DK089098, R01 DK102648, P01DK057751), American Cancer Society (RSG-14-244-01-TBE), State of Connecticut (DPH2014-0139), and Ellison Medical Foundation to XY, and China Scholarship Council Scholarship to SW.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoyong Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, S., Yang, X. Inter-organ regulation of adipose tissue browning. Cell. Mol. Life Sci. 74, 1765–1776 (2017). https://doi.org/10.1007/s00018-016-2420-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-016-2420-x

Keywords

Navigation