Skip to main content

Advertisement

Log in

CFTR pharmacology

  • Multi-author review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

CFTR protein is an ion channel regulated by cAMP-dependent phosphorylation and expressed in many types of epithelial cells. CFTR-mediated chloride and bicarbonate secretion play an important role in the respiratory and gastrointestinal systems. Pharmacological modulators of CFTR represent promising drugs for a variety of diseases. In particular, correctors and potentiators may restore the activity of CFTR in cystic fibrosis patients. Potentiators are also potentially useful to improve mucociliary clearance in patients with chronic obstructive pulmonary disease. On the other hand, CFTR inhibitors may be useful to block fluid and electrolyte loss in secretory diarrhea and slow down the progression of polycystic kidney disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Riordan JR (2008) CFTR function and prospects for therapy. Annu Rev Biochem 77:701–726

    Article  CAS  PubMed  Google Scholar 

  2. Mornon JP, Hoffmann B, Jonic S, Lehn P (2015) Callebaut I (2015) Full-open and closed CFTR channels, with lateral tunnels from the cytoplasm and an alternative position of the F508 region, as revealed by molecular dynamics. Cell Mol Life Sci 72:1377–1403

    Article  CAS  PubMed  Google Scholar 

  3. Elborn JS (2016) Cystic fibrosis. Lancet. doi:10.1016/S0140-6736(16)00576-6

    Google Scholar 

  4. Rogers CS, Stoltz DA, Meyerholz DK, Ostedgaard LS, Rokhlina T, Taft PJ, Rogan MP, Pezzulo AA, Karp PH, Itani OA, Kabel AC, Wohlford-Lenane CL, Davis GJ, Hanfland RA, Smith TL, Samuel M, Wax D, Murphy CN, Rieke A, Whitworth K, Uc A, Starner TD, Brogden KA, Shilyansky J, McCray PB Jr, Zabner J, Prather RS, Welsh MJ (2008) Disruption of the CFTR gene produces a model of cystic fibrosis in newborn pigs. Science 321:1837–1841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Stoltz DA, Meyerholz DK, Pezzulo AA, Ramachandran S, Rogan MP, Davis GJ, Hanfland RA, Wohlford-Lenane C, Dohrn CL, Bartlett JA, Nelson GA 4th, Chang EH, Taft PJ, Ludwig PS, Estin M, Hornick EE, Launspach JL, Samuel M, Rokhlina T, Karp PH, Ostedgaard LS, Uc A, Starner TD, Horswill AR, Brogden KA, Prather RS, Richter SS, Shilyansky J, McCray PB Jr, Zabner J, Welsh MJ (2010) Cystic fibrosis pigs develop lung disease and exhibit defective bacterial eradication at birth. Sci Transl Med 2:29ra31

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Sun X, Sui H, Fisher JT, Yan Z, Liu X, Cho HJ, Joo NS, Zhang Y, Zhou W, Yi Y, Kinyon JM, Lei-Butters DC, Griffin MA, Naumann P, Luo M, Ascher J, Wang K, Frana T, Wine JJ, Meyerholz DK, Engelhardt JF (2010) Disease phenotype of a ferret CFTR-knockout model of cystic fibrosis. J Clin Invest 120:3149–3160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Olivier AK, Yi Y, Sun X, Sui H, Liang B, Hu S, Xie W, Fisher JT, Keiser NW, Lei D, Zhou W, Yan Z, Li G, Evans TI, Meyerholz DK, Wang K, Stewart ZA, Norris AW, Engelhardt JF (2012) Abnormal endocrine pancreas function at birth in cystic fibrosis ferrets. J Clin Invest 122:3755–3768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Cook DP, Rector MV, Bouzek DC, Michalski AS, Gansemer ND, Reznikov LR, Li X, Stroik MR, Ostedgaard LS, Abou Alaiwa MH, Thompson MA, Prakash YS, Krishnan R, Meyerholz DK, Seow CY, Stoltz DA (2016) Cystic fibrosis transmembrane conductance regulator in sarcoplasmic reticulum of airway smooth muscle. Implications for airway contractility. Am J Respir Crit Care Med 193:417–426

    Article  CAS  PubMed  Google Scholar 

  9. Brill SR, Ross KE, Davidow CJ, Ye M, Grantham JJ, Caplan MJ (1996) Immunolocalization of ion transport proteins in human autosomal dominant polycystic kidney epithelial cells. Proc Natl Acad Sci USA 93:10206–10211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Scott-Ward TS, Li H, Schmidt A, Cai Z, Sheppard DN (2004) Direct block of the cystic fibrosis transmembrane conductance regulator Cl channel by niflumic acid. Mol Membr Biol 21:27–38

    Article  CAS  PubMed  Google Scholar 

  11. Sheppard DN, Robinson KA (1997) Mechanism of glibenclamide inhibition of cystic fibrosis transmembrane conductance regulator Cl channels expressed in a murine cell line. J Physiol 503:333–346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Walsh KB, Long KJ, Shen X (1999) Structural and ionic determinants of 5-nitro-2-(3-phenylprophyl-amino)-benzoic acid block of the CFTR chloride channel. Br J Pharmacol 127:369–376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhang ZR, Zeltwanger S, McCarty NA (2000) Direct comparison of NPPB and DPC as probes of CFTR expressed in Xenopus oocytes. J Membr Biol 175:35–52

    Article  CAS  PubMed  Google Scholar 

  14. Zhou Z, Hu S, Hwang TC (2002) Probing an open CFTR pore with organic anion blockers. J Gen Physiol 120:647–662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Jayaraman S, Haggie P, Wachter RM, Remington SJ, Verkman AS (2000) Mechanism and cellular applications of a green fluorescent protein-based halide sensor. J Biol Chem 275:6047–6050

    Article  CAS  PubMed  Google Scholar 

  16. Galietta LV, Jayaraman S, Verkman AS (2001) Cell-based assay for high-throughput quantitative screening of CFTR chloride transport agonists. Am J Physiol 281:C1734–C1742

    CAS  Google Scholar 

  17. Ma T, Thiagarajah JR, Yang H, Sonawane ND, Folli C, Galietta LJ, Verkman AS (2002) Thiazolidinone CFTR inhibitor identified by high-throughput screening blocks cholera toxin-induced intestinal fluid secretion. J Clin Invest 110:1651–1658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Caputo A, Caci E, Ferrera L, Pedemonte N, Barsanti C, Sondo E, Pfeffer U, Ravazzolo R, Zegarra-Moran O, Galietta LJ (2008) TMEM16A, a membrane protein associated with calcium-dependent chloride channel activity. Science 322:590–594

    Article  CAS  PubMed  Google Scholar 

  19. Pedemonte N, Caci E, Sondo E, Caputo A, Rhoden K, Pfeffer U, Di Candia M, Bandettini R, Ravazzolo R, Zegarra-Moran O, Galietta LJ (2007) Thiocyanate transport in resting and IL-4-stimulated human bronchial epithelial cells: role of pendrin and anion channels. J Immunol 178:5144–5153

    Article  CAS  PubMed  Google Scholar 

  20. Taddei A, Folli C, Zegarra-Moran O, Fanen P, Verkman AS, Galietta LJ (2004) Altered channel gating mechanism for CFTR inhibition by a high-affinity thiazolidinone blocker. FEBS Lett 558:52–56

    Article  CAS  PubMed  Google Scholar 

  21. Kopeikin Z, Sohma Y, Li M, Hwang TC (2010) On the mechanism of CFTR inhibition by a thiazolidinone derivative. J Gen Physiol 136:659–671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Caci E, Caputo A, Hinzpeter A, Arous N, Fanen P, Sonawane N, Verkman AS, Ravazzolo R, Zegarra-Moran O, Galietta LJ (2008) Evidence for direct CFTR inhibition by CFTRinh-172 based on Arg347 mutagenesis. Biochem J 413:135–142

    Article  CAS  PubMed  Google Scholar 

  23. Sonawane ND, Verkman AS (2008) Thiazolidinone CFTR inhibitors with improved water solubility identified by structure-activity analysis. Bioorg Med Chem 16:8187–8195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Muanprasat C, Sonawane ND, Salinas D, Taddei A, Galietta LJ, Verkman AS (2004) Discovery of glycine hydrazide pore-occluding CFTR inhibitors: mechanism, structure-activity analysis, and in vivo efficacy. J Gen Physiol 124:125–137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Norimatsu Y, Ivetac A, Alexander C, O’Donnell N, Frye L, Sansom MS, Dawson DC (2012) Locating a plausible binding site for an open-channel blocker, GlyH-101, in the pore of the cystic fibrosis transmembrane conductance regulator. Mol Pharmacol 82:1042–1055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Sonawane ND, Zhao D, Zegarra-Moran O, Galietta LJ, Verkman AS (2008) Nanomolar CFTR inhibition by pore-occluding divalent polyethylene glycol-malonic acid hydrazides. Chem Biol 15:718–728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Sonawane ND, Zhao D, Zegarra-Moran O, Galietta LJ, Verkman AS (2007) Lectin conjugates as potent, nonabsorbable CFTR inhibitors for reducing intestinal fluid secretion in cholera. Gastroenterology 132:1234–1244

    Article  CAS  PubMed  Google Scholar 

  28. Tradtrantip L, Sonawane ND, Namkung W, Verkman AS (2009) Nanomolar potency pyrimido-pyrrolo-quinoxalinedione CFTR inhibitor reduces cyst size in a polycystic kidney disease model. J Med Chem 52:6447–6455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Snyder DS, Tradtrantip L, Yao C, Kurth MJ, Verkman AS (2011) Potent, metabolically stable benzopyrimido-pyrrolo-oxazine-dione (BPO) CFTR inhibitors for polycystic kidney disease. J Med Chem 54:5468–5477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Stutts MJ, Henke DC, Boucher RC (1990) Diphenylamine-2-carboxylate (DPC) inhibits both Cl conductance and cyclooxygenase of canine tracheal epithelium. Pflugers Arch 415:611–616

    Article  CAS  PubMed  Google Scholar 

  31. Kelly M, Trudel S, Brouillard F, Bouillaud F, Colas J, Nguyen-Khoa T, Ollero M, Edelman A, Fritsch J (2010) Cystic fibrosis transmembrane regulator inhibitors CFTRinh-172 and GlyH-101 target mitochondrial functions, independently of chloride channel inhibition. J Pharmacol Exp Ther 333:60–69

    Article  CAS  PubMed  Google Scholar 

  32. Perez A, Issler AC, Cotton CU, Kelley TJ, Verkman AS, Davis PB (2007) CFTR inhibition mimics the cystic fibrosis inflammatory profile. Am J Physiol 292:L383–L395

    CAS  Google Scholar 

  33. Thiagarajah JR, Verkman AS (2013) Chloride channel-targeted therapy for secretory diarrheas. Curr Opin Pharmacol 13:888–894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Davidow CJ, Maser RL, Rome LA, Calvet JP, Grantham JJ (1996) The cystic fibrosis transmembrane conductance regulator mediates transepithelial fluid secretion by human autosomal dominant polycystic kidney disease epithelium in vitro. Kidney Int 50:208–218

    Article  CAS  PubMed  Google Scholar 

  35. Li H, Findlay IA, Sheppard DN (2004) The relationship between cell proliferation, Cl secretion, and renal cyst growth: a study using CFTR inhibitors. Kidney Int 66:1926–1938

    Article  CAS  PubMed  Google Scholar 

  36. Yang B, Sonawane ND, Zhao D, Somlo S, Verkman AS (2008) Small-molecule CFTR inhibitors slow cyst growth in polycystic kidney disease. J Am Soc Nephrol 19:1300–1310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Van Goor F, Hadida S, Grootenhuis PD, Burton B, Cao D, Neuberger T, Turnbull A, Singh A, Joubran J, Hazlewood A, Zhou J, McCartney J, Arumugam V, Decker C, Yang J, Young C, Olson ER, Wine JJ, Frizzell RA, Ashlock M, Negulescu P (2009) Rescue of CF airway epithelial cell function in vitro by a CFTR potentiator, VX-770. Proc Natl Acad Sci USA 106:18825–18830

    Article  PubMed  PubMed Central  Google Scholar 

  38. Accurso FJ, Rowe SM, Clancy JP, Boyle MP, Dunitz JM, Durie PR, Sagel SD, Hornick DB, Konstan MW, Donaldson SH, Moss RB, Pilewski JM, Rubenstein RC, Uluer AZ, Aitken ML, Freedman SD, Rose LM, Mayer-Hamblett N, Dong Q, Zha J, Stone AJ, Olson ER, Ordoñez CL, Campbell PW, Ashlock MA, Ramsey BW (2010) Effect of VX-770 in persons with cystic fibrosis and the G551D-CFTR mutation. N Engl J Med 363:1991–2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ramsey BW, Davies J, McElvaney NG, Tullis E, Bell SC, Dřevínek P, Griese M, McKone EF, Wainwright CE, Konstan MW, Moss R, Ratjen F, Sermet-Gaudelus I, Rowe SM, Dong Q, Rodriguez S, Yen K, Ordoñez C, Elborn JS, VX08-770-102 Study Group (2011) A CFTR potentiator in patients with cystic fibrosis and the G551D mutation. N Engl J Med 365:1663–1672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Veit G, Avramescu RG, Chiang AN, Houck SA, Cai Z, Peters KW, Hong JS, Pollard HB, Guggino WB, Balch WE, Skach WR, Cutting GR, Frizzell RA, Sheppard DN, Cyr DM, Sorscher EJ, Brodsky JL, Lukacs GL (2016) From CFTR biology toward combinatorial pharmacotherapy: expanded classification of cystic fibrosis mutations. Mol Biol Cell 27:424–433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lukacs GL, Verkman AS (2012) CFTR: folding, misfolding and correcting the ΔF508 conformational defect. Trends Mol Med 18:81–91

    Article  CAS  PubMed  Google Scholar 

  42. Drumm ML, Wilkinson DJ, Smit LS, Worrell RT, Strong TV, Frizzell RA, Dawson DC, Collins FS (1991) Chloride conductance expressed by delta F508 and other mutant CFTRs in Xenopus oocytes. Science 254:1797–1799

    Article  CAS  PubMed  Google Scholar 

  43. Arispe N, Ma J, Jacobson KA, Pollard HB (1998) Direct activation of cystic fibrosis transmembrane conductance regulator channels by 8-cyclopentyl-1,3-dipropylxanthine (CPX) and 1,3-diallyl-8-cyclohexylxanthine (DAX). J Biol Chem 273:5727–5734

    Article  CAS  PubMed  Google Scholar 

  44. Al-Nakkash L, Hwang TC (1999) Activation of wild-type and deltaF508-CFTR by phosphodiesterase inhibitors through cAMP-dependent and -independent mechanisms. Pflugers Arch 437:553–561

    Article  CAS  PubMed  Google Scholar 

  45. French PJ, Bijman J, Bot AG, Boomaars WE, Scholte BJ, de Jonge HR (1997) Genistein activates CFTR Cl channels via a tyrosine kinase- and protein phosphatase-independent mechanism. Am J Physiol 273:C747–C753

    CAS  PubMed  Google Scholar 

  46. Illek B, Zhang L, Lewis NC, Moss RB, Dong JY, Fischer H (1999) Defective function of the cystic fibrosis-causing missense mutation G551D is recovered by genistein. Am J Physiol 277:C833–C839

    CAS  PubMed  Google Scholar 

  47. He Z, Raman S, Guo Y, Reenstra WW (1998) Cystic fibrosis transmembrane conductance regulator activation by cAMP-independent mechanisms. Am J Physiol 275:C958–C966

    CAS  PubMed  Google Scholar 

  48. Smit LS, Wilkinson DJ, Mansoura MK, Collins FS, Dawson DC (1993) Functional roles of the nucleotide-binding folds in the activation of the cystic fibrosis transmembrane conductance regulator. Proc Natl Acad Sci USA 90:9963–9967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Weinreich F, Wood PG, Riordan JR, Nagel G (1997) Direct action of genistein on CFTR. Pflugers Arch 434:484–491

    Article  CAS  PubMed  Google Scholar 

  50. Al-Nakkash L, Hu S, Li M, Hwang TC (2001) A common mechanism for cystic fibrosis transmembrane conductance regulator protein activation by genistein and benzimidazolone analogs. J Pharmacol Exp Ther 296:464–472

    CAS  PubMed  Google Scholar 

  51. Cai Z, Sheppard DN (2002) Phloxine B interacts with the cystic fibrosis transmembrane conductance regulator at multiple sites to modulate channel activity. J Biol Chem 277:19546–19553

    Article  CAS  PubMed  Google Scholar 

  52. Becq F, Mettey Y, Gray MA, Galietta LJ, Dormer RL, Merten M, Métayé T, Chappe V, Marvingt-Mounir C, Zegarra-Moran O, Tarran R, Bulteau L, Dérand R, Pereira MM, McPherson MA, Rogier C, Joffre M, Argent BE, Sarrouilhe D, Kammouni W, Figarella C, Verrier B, Gola M, Vierfond JM (1999) Development of substituted Benzo[c]quinolizinium compounds as novel activators of the cystic fibrosis chloride channel. J Biol Chem 274:27415–27425

    Article  CAS  PubMed  Google Scholar 

  53. Zegarra-Moran O, Romio L, Folli C, Caci E, Becq F, Vierfond JM, Mettey Y, Cabrini G, Fanen P, Galietta LJ (2002) Correction of G551D-CFTR transport defect in epithelial monolayers by genistein but not by CPX or MPB-07. Br J Pharmacol 137:504–512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. McCarty NA, Standaert TA, Teresi M, Tuthill C, Launspach J, Kelley TJ, Milgram LJ, Hilliard KA, Regelmann WE, Weatherly MR, Aitken ML, Konstan MW, Ahrens RC (2002) A phase I randomized, multicenter trial of CPX in adult subjects with mild cystic fibrosis. Pediatr Pulmonol 33:90–98

    Article  PubMed  Google Scholar 

  55. Ahrens RC, Standaert TA, Launspach J, Han SH, Teresi ME, Aitken ML, Kelley TJ, Hilliard KA, Milgram LJ, Konstan MW, Weatherly MR, McCarty NA (2002) Use of nasal potential difference and sweat chloride as outcome measures in multicenter clinical trials in subjects with cystic fibrosis. Pediatr Pulmonol 33:142–150

    Article  PubMed  Google Scholar 

  56. Galietta LJ, Haggie PM, Verkman AS (2001) Green fluorescent protein-based halide indicators with improved chloride and iodide affinities. FEBS Lett 499:220–224

    Article  CAS  PubMed  Google Scholar 

  57. Galietta LJ, Springsteel MF, Eda M, Niedzinski EJ, By K, Haddadin MJ, Kurth MJ, Nantz MH, Verkman AS (2001) Novel CFTR chloride channel activators identified by screening of combinatorial libraries based on flavone and benzoquinolizinium lead compounds. J Biol Chem 276:19723–19728

    Article  CAS  PubMed  Google Scholar 

  58. Sammelson RE, Ma T, Galietta LJ, Verkman AS, Kurth MJ (2003) 3-(2-Benzyloxyphenyl)isoxazoles and isoxazolines: synthesis and evaluation as CFTR activators. Bioorg Med Chem Lett 13:2509–2512

    Article  CAS  PubMed  Google Scholar 

  59. Ma T, Vetrivel L, Yang H, Pedemonte N, Zegarra-Moran O, Galietta LJ, Verkman AS (2002) High-affinity activators of cystic fibrosis transmembrane conductance regulator (CFTR) chloride conductance identified by high-throughput screening. J Biol Chem 277:37235–37241

    Article  CAS  PubMed  Google Scholar 

  60. Yang H, Shelat AA, Guy RK, Gopinath VS, Ma T, Du K, Lukacs GL, Taddei A, Folli C, Pedemonte N, Galietta LJ, Verkman AS (2003) Nanomolar affinity small molecule correctors of defective Delta F508-CFTR chloride channel gating. J Biol Chem 278:35079–35085

    Article  CAS  PubMed  Google Scholar 

  61. Pedemonte N, Sonawane ND, Taddei A, Hu J, Zegarra-Moran O, Suen YF, Robins LI, Dicus CW, Willenbring D, Nantz MH, Kurth MJ, Galietta LJ, Verkman AS (2005) Phenylglycine and sulfonamide correctors of defective ∆F508 and G551D cystic fibrosis transmembrane conductance regulator chloride-channel gating. Mol Pharmacol 67:1797–1807

    Article  CAS  PubMed  Google Scholar 

  62. Pedemonte N, Diena T, Caci E, Nieddu E, Mazzei M, Ravazzolo R, Zegarra-Moran O, Galietta LJ (2005) Antihypertensive 1,4-dihydropyridines as correctors of the cystic fibrosis transmembrane conductance regulator channel gating defect caused by cystic fibrosis mutations. Mol Pharmacol 68:1736–1746

    CAS  PubMed  Google Scholar 

  63. Pedemonte N, Boido D, Moran O, Giampieri M, Mazzei M, Ravazzolo R, Galietta LJ (2007) Structure-activity relationship of 1,4-dihydropyridines as potentiators of the cystic fibrosis transmembrane conductance regulator chloride channel. Mol Pharmacol 72:197–207

    Article  CAS  PubMed  Google Scholar 

  64. Van Goor F, Straley KS, Cao D, González J, Hadida S, Hazlewood A, Joubran J, Knapp T, Makings LR, Miller M, Neuberger T, Olson E, Panchenko V, Rader J, Singh A, Stack JH, Tung R, Grootenhuis PD, Negulescu P (2006) Rescue of ∆F508-CFTR trafficking and gating in human cystic fibrosis airway primary cultures by small molecules. Am J Physiol 290:L1117–L1130

    Google Scholar 

  65. Hadida S, Van Goor F, Zhou J, Arumugam V, McCartney J, Hazlewood A, Decker C, Negulescu P, Grootenhuis PD (2014) Discovery of N-(2,4-di-tert-butyl-5-hydroxyphenyl)-4-oxo-1,4-dihydroquinoline-3-carboxamide (VX-770, ivacaftor), a potent and orally bioavailable CFTR potentiator. J Med Chem 57:9776–9795

    Article  CAS  PubMed  Google Scholar 

  66. Van Goor F, Yu H, Burton B, Hoffman B (2014) Effect of ivacaftor on CFTR forms with missense mutations associated with defects in protein processing or function. J Cyst Fibros 13:29–36

    Article  PubMed  CAS  Google Scholar 

  67. Moran O, Galietta LJ, Zegarra-Moran O (2005) Binding site of activators of the cystic fibrosis transmembrane conductance regulator in the nucleotide binding domains. Cell Mol Life Sci 62:446–460

    Article  CAS  PubMed  Google Scholar 

  68. Lewis HA, Buchanan SG, Burley SK, Conners K, Dickey M, Dorwart M, Fowler R, Gao X, Guggino WB, Hendrickson WA, Hunt JF, Kearins MC, Lorimer D, Maloney PC, Post KW, Rajashankar KR, Rutter ME, Sauder JM, Shriver S, Thibodeau PH, Thomas PJ, Zhang M, Zhao X, Emtage S (2004) Structure of nucleotide-binding domain 1 of the cystic fibrosis transmembrane conductance regulator. EMBO J 23:282–293

    Article  CAS  PubMed  Google Scholar 

  69. Zegarra-Moran O, Monteverde M, Galietta LJ, Moran O (2007) Functional analysis of mutations in the putative binding site for cystic fibrosis transmembrane conductance regulator potentiators. Interaction between activation and inhibition. J Biol Chem 282:9098–9104

    Article  CAS  PubMed  Google Scholar 

  70. Li MS, Cowley EA, Linsdell P (2012) Pseudohalide anions reveal a novel extracellular site for potentiators to increase CFTR function. Br J Pharmacol 167:1062–1075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Wellhauser L, Kim Chiaw P, Pasyk S, Li C, Ramjeesingh M, Bear CE (2009) A small-molecule modulator interacts directly with deltaPhe508-CFTR to modify its ATPase activity and conformational stability. Mol Pharmacol 75:1430–1438

    Article  CAS  PubMed  Google Scholar 

  72. Galfrè E, Galeno L, Moran O (2012) A potentiator induces conformational changes on the recombinant CFTR nucleotide binding domains in solution. Cell Mol Life Sci 69:3701–3713

    Article  PubMed  CAS  Google Scholar 

  73. Eckford PD, Li C, Ramjeesingh M, Bear CE (2012) Cystic fibrosis transmembrane conductance regulator (CFTR) potentiator VX-770 (ivacaftor) opens the defective channel gate of mutant CFTR in a phosphorylation-dependent but ATP-independent manner. J Biol Chem 287:36639–36649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Jih KY, Hwang TC (2013) Vx-770 potentiates CFTR function by promoting decoupling between the gating cycle and ATP hydrolysis cycle. Proc Natl Acad Sci USA 110:4404–4409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Sloane PA, Shastry S, Wilhelm A, Courville C, Tang LP, Backer K, Levin E, Raju SV, Li Y, Mazur M, Byan-Parker S, Grizzle W, Sorscher EJ, Dransfield MT, Rowe SM (2012) A pharmacologic approach to acquired cystic fibrosis transmembrane conductance regulator dysfunction in smoking related lung disease. PLoS One 7:e39809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Dransfield MT, Wilhelm AM, Flanagan B, Courville C, Tidwell SL, Raju SV, Gaggar A, Steele C, Tang LP, Liu B, Rowe SM (2013) Acquired cystic fibrosis transmembrane conductance regulator dysfunction in the lower airways in COPD. Chest 144:498–506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Pedemonte N, Zegarra-Moran O, Galietta LJ (2011) High-throughput screening of libraries of compounds to identify CFTR modulators. Methods Mol Biol 741:13–21

    Article  CAS  PubMed  Google Scholar 

  78. Carlile GW, Robert R, Zhang D, Teske KA, Luo Y, Hanrahan JW, Thomas DY (2007) Correctors of protein trafficking defects identified by a novel high-throughput screening assay. ChemBioChem 8:1012–1020

    Article  CAS  PubMed  Google Scholar 

  79. Pedemonte N, Lukacs GL, Du K, Caci E, Zegarra-Moran O, Galietta LJ, Verkman AS (2005) Small-molecule correctors of defective DeltaF508-CFTR cellular processing identified by high-throughput screening. J Clin Invest 115:2564–2571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Yoo CL, Yu GJ, Yang B, Robins LI, Verkman AS, Kurth MJ (2008) 4′-Methyl-4,5′-bithiazole-based correctors of defective delta F508-CFTR cellular processing. Bioorg Med Chem Lett 18:2610–2614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Yu GJ, Yoo CL, Yang B, Lodewyk MW, Meng L, El-Idreesy TT, Fettinger JC, Tantillo DJ, Verkman AS, Kurth MJ (2008) Potent s-cis-locked bithiazole correctors of ∆F508 cystic fibrosis transmembrane conductance regulator cellular processing for cystic fibrosis therapy. J Med Chem 51:6044–6054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Coffman KC, Nguyen HH, Phuan PW, Hudson BM, Yu GJ, Bagdasarian AL, Montgomery D, Lodewyk MW, Yang B, Yoo CL, Verkman AS, Tantillo DJ, Kurth MJ (2014) Constrained bithiazoles: small molecule correctors of defective ΔF508-CFTR protein trafficking. J Med Chem 57:6729–6738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Van Goor F, Hadida S, Grootenhuis PD, Burton B, Stack JH, Straley KS, Decker CJ, Miller M, McCartney J, Olson ER, Wine JJ, Frizzell RA, Ashlock M, Negulescu PA (2011) Correction of the F508del-CFTR protein processing defect in vitro by the investigational drug VX-809. Proc Natl Acad Sci USA 108:18843–18848

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Robert R, Carlile GW, Pavel C, Liu N, Anjos SM, Liao J, Luo Y, Zhang D, Thomas DY, Hanrahan JW (2008) Structural analog of sildenafil identified as a novel corrector of the F508del-CFTR trafficking defect. Mol Pharmacol 73:478–489

    Article  CAS  PubMed  Google Scholar 

  85. Robert R, Carlile GW, Liao J, Balghi H, Lesimple P, Liu N, Kus B, Rotin D, Wilke M, de Jonge HR, Scholte BJ, Thomas DY, Hanrahan JW (2010) Correction of the ∆phe508 cystic fibrosis transmembrane conductance regulator trafficking defect by the bioavailable compound glafenine. Mol Pharmacol 77:922–930

    Article  CAS  PubMed  Google Scholar 

  86. Carlile GW, Keyzers RA, Teske KA, Robert R, Williams DE, Linington RG, Gray CA, Centko RM, Yan L, Anjos SM, Sampson HM, Zhang D, Liao J, Hanrahan JW, Andersen RJ, Thomas DY (2012) Correction of F508del-CFTR trafficking by the sponge alkaloid latonduine is modulated by interaction with PARP. Chem Biol 19:1288–1299

    Article  CAS  PubMed  Google Scholar 

  87. Hutt DM, Herman D, Rodrigues AP, Noel S, Pilewski JM, Matteson J, Hoch B, Kellner W, Kelly JW, Schmidt A, Thomas PJ, Matsumura Y, Skach WR, Gentzsch M, Riordan JR, Sorscher EJ, Okiyoneda T, Yates JR 3rd, Lukacs GL, Frizzell RA, Manning G, Gottesfeld JM, Balch WE (2010) Reduced histone deacetylase 7 activity restores function to misfolded CFTR in cystic fibrosis. Nat Chem Biol 6:25–33

    Article  CAS  PubMed  Google Scholar 

  88. Trzcinska-Daneluti AM, Nguyen L, Jiang C, Fladd C, Uehling D, Prakesch M, Al-awar R, Rotin D (2012) Use of kinase inhibitors to correct ΔF508-CFTR function. Mol Cell Proteomics 11:745–757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Norez C, Vandebrouck C, Bertrand J, Noel S, Durieu E, Oumata N, Galons H, Antigny F, Chatelier A, Bois P, Meijer L, Becq F (2014) Roscovitine is a proteostasis regulator that corrects the trafficking defect of F508del-CFTR by a CDK-independent mechanism. Br J Pharmacol 171:4831–4849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Luciani A, Villella VR, Esposito S, Brunetti-Pierri N, Medina D, Settembre C, Gavina M, Pulze L, Giardino I, Pettoello-Mantovani M, D’Apolito M, Guido S, Masliah E, Spencer B, Quaratino S, Raia V, Ballabio A, Maiuri L (2010) Defective CFTR induces aggresome formation and lung inflammation in cystic fibrosis through ROS-mediated autophagy inhibition. Nat Cell Biol 12:863–875

    Article  CAS  PubMed  Google Scholar 

  91. De Stefano D, Villella VR, Esposito S, Tosco A, Sepe A, De Gregorio F, Salvadori L, Grassia R, Leone CA, De Rosa G, Maiuri MC, Pettoello-Mantovani M, Guido S, Bossi A, Zolin A, Venerando A, Pinna LA, Mehta A, Bona G, Kroemer G, Maiuri L, Raia V (2014) Restoration of CFTR function in patients with cystic fibrosis carrying the F508del-CFTR mutation. Autophagy 10:2053–2074

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Odolczyk N, Fritsch J, Norez C, Servel N, da Cunha MF, Bitam S, Kupniewska A, Wiszniewski L, Colas J, Tarnowski K, Tondelier D, Roldan A, Saussereau EL, Melin-Heschel P, Wieczorek G, Lukacs GL, Dadlez M, Faure G, Herrmann H, Ollero M, Becq F, Zielenkiewicz P, Edelman A (2013) Discovery of novel potent ΔF508-CFTR correctors that target the nucleotide binding domain. EMBO Mol Med 5:1484–1501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Hegde RN, Parashuraman S, Iorio F, Ciciriello F, Capuani F, Carissimo A, Carrella D, Belcastro V, Subramanian A, Bounti L, Persico M, Carlile G, Galietta L, Thomas DY, Di Bernardo D, Luini A (2015) Unravelling druggable signalling networks that control F508del-CFTR proteostasis. Elife 4:e10365

    Article  PubMed  PubMed Central  Google Scholar 

  94. Pankow S, Bamberger C, Calzolari D, Martínez-Bartolomé S, Lavallée-Adam M, Balch WE, Yates JR 3rd (2015) ∆F508 CFTR interactome remodelling promotes rescue of cystic fibrosis. Nature 528:510–516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Veit G, Avramescu RG, Perdomo D, Phuan PW, Bagdany M, Apaja PM, Borot F, Szollosi D, Wu YS, Finkbeiner WE, Hegedus T, Verkman AS, Lukacs GL (2014) Some gating potentiators, including VX-770, diminish ΔF508-CFTR functional expression. Sci Transl Med 6:246ra97

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Cholon DM, Quinney NL, Fulcher ML, Esther CR Jr, Das J, Dokholyan NV, Randell SH, Boucher RC, Gentzsch M (2014) Potentiator ivacaftor abrogates pharmacological correction of ΔF508 CFTR in cystic fibrosis. Sci Transl Med 6:246ra96

    Article  PubMed  PubMed Central  Google Scholar 

  97. Favia M, Mancini MT, Bezzerri V, Guerra L, Laselva O, Abbattiscianni AC, Debellis L, Reshkin SJ, Gambari R, Cabrini G, Casavola V (2014) Trimethylangelicin promotes the functional rescue of mutant F508del CFTR protein in cystic fibrosis airway cells. Am J Physiol 307:L48–L61

    CAS  Google Scholar 

  98. Pedemonte N, Tomati V, Sondo E, Caci E, Millo E, Armirotti A, Damonte G, Zegarra-Moran O, Galietta LJ (2011) Dual activity of aminoarylthiazoles on the trafficking and gating defects of the cystic fibrosis transmembrane conductance regulator chloride channel caused by cystic fibrosis mutations. J Biol Chem 286:15215–15226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Pesce E, Bellotti M, Liessi N, Guariento S, Damonte G, Cichero E, Galatini A, Salis A, Gianotti A, Pedemonte N, Zegarra-Moran O, Fossa P, Galietta LJ, Millo E (2015) Synthesis and structure-activity relationship of aminoarylthiazole derivatives as correctors of the chloride transport defect in cystic fibrosis. Eur J Med Chem 99:14–35

    Article  CAS  PubMed  Google Scholar 

  100. Carlile GW, Robert R, Matthes E, Yang Q, Solari R, Hatley R, Edge CM, Hanrahan JW, Andersen R, Thomas DY, Birault V (2016) Latonduine analogs restore F508del-cystic fibrosis transmembrane conductance regulator trafficking through the modulation of poly-ADP ribose polymerase 3 and poly-ADP ribose polymerase 16 activity. Mol Pharmacol 90:65–79

    Article  CAS  PubMed  Google Scholar 

  101. Okiyoneda T, Veit G, Dekkers JF, Bagdany M, Soya N, Xu H, Roldan A, Verkman AS, Kurth M, Simon A, Hegedus T, Beekman JM, Lukacs GL (2013) Mechanism-based corrector combination restores ΔF508-CFTR folding and function. Nat Chem Biol 9:444–454

    Article  CAS  PubMed  Google Scholar 

  102. Farinha CM, King-Underwood J, Sousa M, Correia AR, Henriques BJ, Roxo-Rosa M, Da Paula AC, Williams J, Hirst S, Gomes CM, Amaral MD (2013) Revertants, low temperature, and correctors reveal the mechanism of F508del-CFTR rescue by VX-809 and suggest multiple agents for full correction. Chem Biol 20:943–955

    Article  CAS  PubMed  Google Scholar 

  103. Grove DE, Rosser MF, Ren HY, Naren AP, Cyr DM (2009) Mechanisms for rescue of correctable folding defects in CFTR∆F508. Mol Biol Cell 20:4059–4069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Clancy JP, Rowe SM, Accurso FJ, Aitken ML, Amin RS, Ashlock MA, Ballmann M, Boyle MP, Bronsveld I, Campbell PW, De Boeck K, Donaldson SH, Dorkin HL, Dunitz JM, Durie PR, Jain M, Leonard A, McCoy KS, Moss RB, Pilewski JM, Rosenbluth DB, Rubenstein RC, Schechter MS, Botfield M, Ordoñez CL, Spencer-Green GT, Vernillet L, Wisseh S, Yen K, Konstan MW (2012) Results of a phase IIa study of VX-809, an investigational CFTR corrector compound, in subjects with cystic fibrosis homozygous for the F508del-CFTR mutation. Thorax 67:12–18

    Article  CAS  PubMed  Google Scholar 

  105. Wainwright CE, Elborn JS, Ramsey BW, Marigowda G, Huang X, Cipolli M, Colombo C, Davies JC, De Boeck K, Flume PA, Konstan MW, McColley SA, McCoy K, McKone EF, Munck A, Ratjen F, Rowe SM, Waltz D, Boyle MP, TRAFFIC Study Group; TRANSPORT Study Group (2015) Lumacaftor-Ivacaftor in Patients with Cystic Fibrosis Homozygous for Phe508del CFTR. N Engl J Med 373:220–231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis J. V. Galietta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zegarra-Moran, O., Galietta, L.J.V. CFTR pharmacology. Cell. Mol. Life Sci. 74, 117–128 (2017). https://doi.org/10.1007/s00018-016-2392-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-016-2392-x

Keywords

Navigation