Skip to main content
Log in

The gene regulatory networks underlying formation of the auditory hindbrain

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Development and evolution of auditory hindbrain nuclei are two major unsolved issues in hearing research. Recent characterization of transgenic mice identified the rhombomeric origins of mammalian auditory nuclei and unraveled genes involved in their formation. Here, we provide an overview on these data by assembling them into rhombomere-specific gene regulatory networks (GRNs), as they underlie developmental and evolutionary processes. To explore evolutionary mechanisms, we compare the GRNs operating in the mammalian auditory hindbrain with data available from the inner ear and other vertebrate groups. Finally, we propose that the availability of genomic sequences from all major vertebrate taxa and novel genetic techniques for non-model organisms provide an unprecedented opportunity to investigate development and evolution of the auditory hindbrain by comparative molecular approaches. The dissection of the molecular mechanisms leading to auditory structures will also provide an important framework for auditory processing disorders, a clinical problem difficult to tackle so far. These data will, therefore, foster basic and clinical hearing research alike.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

A–P:

Anterior–posterior

AVCN:

Anterior ventral cochlear nucleus

BMP:

Bone morphogenetic protein

CNC:

Cochlear nucleus complex

DCN:

Dorsal cochlear nucleus

E:

Embryonic

LSO:

Lateral superior olive

MNTB:

Medial nucleus of the trapezoid body

NA:

Nucleus angularis

NL:

Nucleus laminaris

NLL:

Nucleus of the lateral lemniscus

NM:

Nucleus magnocellularis

P:

Postnatal

PVCN:

Posterior ventral cochlear nucleus

r:

Rhombomere

RA:

Retinoic acid

SOC:

Superior olivary complex

TF:

Transcription factor

References

  1. Abouheif E (1997) Developmental genetics and homology: a hierarchical approach. Trends Ecol Evol 12:405–408

    CAS  PubMed  Google Scholar 

  2. Abouheif E (1999) Establishing homology criteria for regulatory gene networks: prospects and challenges. Novartis Found Symp 222:207–221

    CAS  PubMed  Google Scholar 

  3. Alasti F, Sadeghi A, Sanati MH, Farhadi M, Stollar E, Somers T, Van CG (2008) A mutation in HOXA2 is responsible for autosomal-recessive microtia in an Iranian family. Am J Hum Genet 82:982–991

    CAS  PubMed Central  PubMed  Google Scholar 

  4. Alexander T, Nolte C, Krumlauf R (2009) Hox genes and segmentation of the hindbrain and axial skeleton. Annu Rev Cell Dev Biol 25:431–456

    CAS  PubMed  Google Scholar 

  5. Alonso A, Merchán P, Sandoval JE, Sánchez-Arrones L, Garcia-Cazorla A, Artuch R, Ferrán JL, Martínez-de-la-Torre M, Puelles L (2013) Development of the serotonergic cells in murine raphe nuclei and their relations with rhombomeric domains. Brain Struct Funct 218:1229–1277

    CAS  PubMed Central  PubMed  Google Scholar 

  6. Amores A, Force A, Yan YL, Joly L, Amemiya C, Fritz A, Ho RK, Langeland J, Prince V, Wang YL, Westerfield M, Ekker M, Postlethwait JH (1998) Zebrafish hox clusters and vertebrate genome evolution. Science 282:1711–1714

    CAS  PubMed  Google Scholar 

  7. Appler JM, Lu CC, Druckenbrod NR, Yu W, Koundakjian EJ, Goodrich LV (2013) Gata3 is a critical regulator of cochlear wiring. J Neurosci 33:3679–3691

    CAS  PubMed Central  PubMed  Google Scholar 

  8. Aragon F, Pujades C (2009) FGF signaling controls caudal hindbrain specification through Ras-ERK1/2 pathway. BMC Dev Biol 9:61

    PubMed Central  PubMed  Google Scholar 

  9. Aragon F, Vazquez-Echeverria C, Ulloa E, Reber M, Cereghini S, Alsina B, Giraldez F, Pujades C (2005) vHnf1 regulates specification of caudal rhombomere identity in the chick hindbrain. Dev Dyn 234:567–576

    CAS  PubMed  Google Scholar 

  10. Bami M, Episkopou V, Gavalas A, Gouti M (2011) Directed neural differentiation of mouse embryonic stem cells is a sensitive system for the identification of novel Hox gene effectors. PLoS One 6:e20197

    CAS  PubMed Central  PubMed  Google Scholar 

  11. Barrow JR, Stadler HS, Capecchi MR (2000) Roles of Hoxa1 and Hoxa2 in patterning the early hindbrain of the mouse. Development 127:933–944

    CAS  PubMed  Google Scholar 

  12. Bell D, Streit A, Gorospe I, Varela-Nieto I, Alsina B, Giraldez F (2008) Spatial and temporal segregation of auditory and vestibular neurons in the otic placode. Dev Biol 322:109–120

    CAS  PubMed  Google Scholar 

  13. Bermingham NA, Hassan BA, Price SD, Vollrath MA, Ben Arie N, Eatock RA, Bellen HJ, Lysakowski A, Zoghbi HY (1999) Math1: an essential gene for the generation of inner ear hair cells. Science 284:1837–1841

    CAS  PubMed  Google Scholar 

  14. Bermingham NA, Hassan BA, Wang VY, Fernandez M, Banfi S, Bellen HJ, Fritzsch B, Zoghbi HY (2001) Proprioceptor pathway development is dependent on Math1. Neuron 30:411–422

    CAS  PubMed  Google Scholar 

  15. Birgbauer E, Fraser SE (1994) Violation of cell lineage restriction compartments in the chick hindbrain. Development 120:1347–1356

    CAS  PubMed  Google Scholar 

  16. Boord RL, McCormick CA (1984) Central lateral line and auditory pathways: a phylogenetic perspective. Am Zool:765–774

  17. Borst JGG, van Soria Hoeve (2012) The calyx of held synapse: from model synapse to auditory relay. Annu Rev Physiol 74:199–224

    CAS  PubMed  Google Scholar 

  18. Bouchoucha YX, Reingruber J, Labalette C, Wassef MA, Thierion E, Desmarquet-Trin Dinh C, Holcman D, Gilardi-Hebenstreit P, Charnay P (2013) Dissection of a Krox20 positive feedback loop driving cell fate choices in hindbrain patterning. Mol Syst Biol 9:690

    CAS  PubMed Central  PubMed  Google Scholar 

  19. Brainard MS, Knudsen EI (1993) Experience-dependent plasticity in the inferior colliculus: a site for visual calibration of the neural representation of auditory space in the barn owl. J Neurosci 13:4589–4608

    CAS  PubMed  Google Scholar 

  20. Bruce LL, Kingsley J, Nichols DH, Fritzsch B (1997) The development of vestibulocochlear efferents and cochlear afferents in mice. Int J Dev Neurosci 15:671–692

    CAS  PubMed  Google Scholar 

  21. Buecker C, Wysocka J (2012) Enhancers as information integration hubs in development: lessons from genomics. Trends Genet 28:276–284

    CAS  PubMed  Google Scholar 

  22. Cambronero F, Puelles L (2000) Rostrocaudal nuclear relationships in the avian medulla oblongata: a fate map with quail chick chimeras. J Comp Neurol 427:522–545

    CAS  PubMed  Google Scholar 

  23. Carr CE, Edds-Walton PL (2008) Vertebrate auditory pathways. In: Dallos P, Oertel D (eds) The senses: a comprehensive reference, vol 3. Academic Press, San Diego, pp 499–523

  24. Carr CE, Soares D (2002) Evolutionary convergence and shared computational principles in the auditory system. Brain Behav Evol 59:294–311

    CAS  PubMed  Google Scholar 

  25. Carr CE, Soares D, Parameshwaran S, Perney T (2001) Evolution and development of time coding systems. Curr Opin Neurobiol 11:727–733

    CAS  PubMed  Google Scholar 

  26. Casseday JH, Fremouw T, Covey E (2002) The Inferior colliculus: a hub for the central auditory system. In: Oertel D, Fay RR, Popper AA (eds) Springer handbook of auditory research: integrative functions in the mammalian auditory pathway. Springer, New York, pp 238–318

    Google Scholar 

  27. Chen J, Ruley HE (1998) An enhancer element in the EphA2 (Eck) gene sufficient for rhombomere-specific expression is activated by HOXA1 and HOXB1 homeobox proteins. J Biol Chem 273:24670–24675

    CAS  PubMed  Google Scholar 

  28. Chermak GD, Musiek FE (1997) Central auditory processing disorders: new perspectives. Singular Publishing Group, San Diego

    Google Scholar 

  29. Chisaka O, Musci TS, Capecchi MR (1992) Developmental defects of the ear, cranial nerves and hindbrain resulting from targeted disruption of the mouse homeobox gene Hox-1.6. Nature 355:516–520

    CAS  PubMed  Google Scholar 

  30. Chomette D, Frain M, Cereghini S, Charnay P, Ghislain J (2006) Krox20 hindbrain cis-regulatory landscape: interplay between multiple long-range initiation and autoregulatory elements. Development 133:1253–1262

    CAS  PubMed  Google Scholar 

  31. Christensen-Dalsgaard J, Carr CE (2008) Evolution of a sensory novelty: tympanic ears and the associated neural processing. Brain Res Bull 75:365–370

    PubMed Central  PubMed  Google Scholar 

  32. Clack JA (1997) The Evolution of tetrapod ears and the fossil record. Brain Behav Evol 50(4):198–212

  33. Clack JA (2002) Patterns and processes in the early evolution of the tetrapod ear. J Neurobiol 53(2):251–264. doi:10.1002/neu.10129

  34. Clack JA, Allin E (2004) The evolution of single- and multiple ossicle ears in fishes and tetrapods. In: Manley GA, Popper AN, Fay RR (eds) Evolution of the vertebrate auditory system. Springer, New York, pp 128–163

    Google Scholar 

  35. Coffinier C, Thepot D, Babinet C, Yaniv M, Barra J (1999) Essential role for the homeoprotein vHNF1/HNF1beta in visceral endoderm differentiation. Development 126:4785–4794

    CAS  PubMed  Google Scholar 

  36. Cordes SP, Barsh GS (1994) The mouse segmentation gene kr encodes a novel basic domain-leucine zipper transcription factor. Cell 79:1025–1034

    CAS  PubMed  Google Scholar 

  37. Cramer KS, Fraser SE, Rubel EW (2000) Embryonic origins of auditory brain-stem nuclei in the chick hindbrain. Dev Biol 224:138–151

    CAS  PubMed  Google Scholar 

  38. Davenne M, Maconochie MK, Neun R, Pattyn A, Chambon P, Krumlauf R, Rijli FM (1999) Hoxa2 and Hoxb2 control dorsoventral patterns of neuronal development in the rostral hindbrain. Neuron 22:677–691

    CAS  PubMed  Google Scholar 

  39. Davidson EH (2006) The regulatory genome. Gene regulatory networks in development and evolution. Academic Press, Amsterdam

    Google Scholar 

  40. Davidson EH, Erwin DH (2006) Gene regulatory networks and the evolution of animal body plans. Science 311:796–800

    CAS  PubMed  Google Scholar 

  41. Davis A, Scemama J, Stellwag EJ (2008) Japanese medaka Hox paralog group 2: insights into the evolution of Hox PG2 gene composition and expression in the Osteichthyes. J Exp Zool B Mol Dev Evol 310:623–641

    PubMed  Google Scholar 

  42. Dawes R, Dawson I, Falciani F, Tear G, Akam M (1994) Dax, a locust Hox gene related to fushi-tarazu but showing no pair-rule expression. Development 120:1561–1572

    CAS  PubMed  Google Scholar 

  43. Dawid IB, Chitnis AB (2001) Lim homeobox genes and the CNS: a close relationship. Neuron 30:301–303

    CAS  PubMed  Google Scholar 

  44. Deol MS (1964) The abnormalities of the inner ear in kreisler mice. J Embryol Exp Morphol 12:475–490

    CAS  PubMed  Google Scholar 

  45. Derobert Y, Baratte B, Lepage M, Mazan S (2002) Pax6 expression patterns in Lampetra fluviatilis and Scyliorhinus canicula embryos suggest highly conserved roles in the early regionalization of the vertebrate brain. Brain Res Bull 57:277–280

    CAS  PubMed  Google Scholar 

  46. Desmazieres A, Charnay P, Gilardi-Hebenstreit P (2009) Krox20 controls the transcription of its various targets in the developing hindbrain according to multiple modes. J Biol Chem 284:10831–10840

    CAS  PubMed Central  PubMed  Google Scholar 

  47. Di Bonito M, Narita Y, Avallone B, Sequino L, Mancuso M, Andolfi G, Franzè AM, Puelles L, Rijli FM, Studer M (2013) Assembly of the auditory circuitry by a Hox genetic network in the mouse brainstem. PLoS Genet 9:e1003249

    PubMed Central  PubMed  Google Scholar 

  48. Distel M, Wullimann MF, Koster RW (2009) Optimized Gal4 genetics for permanent gene expression mapping in zebrafish. Proc Natl Acad Sci USA 106:13365–13370

    CAS  PubMed Central  PubMed  Google Scholar 

  49. Dong D, Ruuska SE, Levinthal DJ, Noy N (1999) Distinct roles for cellular retinoic acid-binding proteins I and II in regulating signaling by retinoic acid. J Biol Chem 274:23695–23698

    CAS  PubMed  Google Scholar 

  50. Duncan JS, Fritzsch B (2013) Continued expression of GATA3 is necessary for cochlear neurosensory development. PLoS One 8:e62046

    CAS  PubMed Central  PubMed  Google Scholar 

  51. Dupe V, Lumsden A (2001) Hindbrain patterning involves graded responses to retinoic acid signalling. Development 128:2199–2208

    CAS  PubMed  Google Scholar 

  52. Ehmann H, Hartwich H, Salzig C, Hartmann N, Clément-Ziza M, Ushakov K, Avraham KB, Bininda-Emonds, Olaf RP, Hartmann AK, Lang P, Friauf E, Nothwang HG (2013) Time-dependent gene expression analysis of the developing superior olivary complex. J Biol Chem 288:25865–25879

    CAS  PubMed Central  PubMed  Google Scholar 

  53. Englitz B, Tolnai S, Typlt M, Jost J, Rubsamen R (2009) Reliability of synaptic transmission at the synapses of Held in vivo under acoustic stimulation. PLoS One 4:e7014

    PubMed Central  PubMed  Google Scholar 

  54. Ettensohn CA (2013) Encoding anatomy: developmental gene regulatory networks and morphogenesis. Genesis 51:383–409

    CAS  PubMed  Google Scholar 

  55. Farago AF, Awatramani RB, Dymecki SM (2006) Assembly of the brainstem cochlear nuclear complex is revealed by intersectional and subtractive genetic fate maps. Neuron 50:205–218

    CAS  PubMed  Google Scholar 

  56. Frasch M, Chen X, Lufkin T (1995) Evolutionary-conserved enhancers direct region-specific expression of the murine Hoxa-1 and Hoxa-2 loci in both mice and Drosophila. Development 121:957–974

    CAS  PubMed  Google Scholar 

  57. Fraser S, Keynes R, Lumsden A (1990) Segmentation in the chick embryo hindbrain is defined by cell lineage restrictions. Nature 344:431–435

    CAS  PubMed  Google Scholar 

  58. Fritzsch B (1988) The amphibian octavo-lateralis system and its regressive and progressive evolution. Acta Biol Hung 39:305–322

    CAS  PubMed  Google Scholar 

  59. Fritzsch B, Beisel KW, Pauley S, Soukup G (2007) Molecular evolution of the vertebrate mechanosensory cell and ear. Int J Dev Biol 51:663–678

    CAS  PubMed Central  PubMed  Google Scholar 

  60. Fritzsch B, Pauley S, Feng F, Matei V, Nichols DH (2006) The molecular and developmental basis of the evolution of the vertebrate auditory system. Int J Comp Psychol 19:1–25

    Google Scholar 

  61. Fu Y, Tvrdik P, Makki N, Paxinos G, Watson C (2011) Precerebellar cell groups in the hindbrain of the mouse defined by retrograde tracing and correlated with cumulative Wnt1-cre genetic labeling. Cerebellum 10:570–584

    PubMed  Google Scholar 

  62. Gaj T, Gersbach CA, Barbas (2013) ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol 31:397–405

    CAS  PubMed Central  PubMed  Google Scholar 

  63. Garcia-Gutierrez P, Juarez-Vicente F, Gallardo-Chamizo F, Charnay P, Garcia-Dominguez M (2011) The transcription factor Krox20 is an E3 ligase that sumoylates its Nab coregulators. EMBO Rep 12:1018–1023

    CAS  PubMed Central  PubMed  Google Scholar 

  64. Gaufo GO, Thomas KR, Capecchi MR (2003) Hox3 genes coordinate mechanisms of genetic suppression and activation in the generation of branchial and somatic motoneurons. Development 130:5191–5201

    CAS  PubMed  Google Scholar 

  65. Gavalas A (2002) ArRAnging the hindbrain. Trends Neurosci 25:61–64

    CAS  PubMed  Google Scholar 

  66. Gavalas A, Davenne M, Lumsden A, Chambon P, Rijli FM (1997) Role of Hoxa-2 in axon pathfinding and rostral hindbrain patterning. Development 124(19):3693–3702

    CAS  PubMed  Google Scholar 

  67. Gavalas A, Ruhrberg C, Livet J, Henderson CE, Krumlauf R (2003) Neuronal defects in the hindbrain of Hoxa1, Hoxb1 and Hoxb2 mutants reflect regulatory interactions among these Hox genes. Development 130:5663–5679

    CAS  PubMed  Google Scholar 

  68. Geiger JRP, Melcher T, Koh DS, Sakmann B, Seeburg PH, Jonas P, Monyer H (1995) Relative abundance of subunit mRNAs determines gating and Ca2+ permeability of AMPA receptors in principal neurons and interneurons in rat CNS. Neuron 15:193–204

    CAS  PubMed  Google Scholar 

  69. von Gersdorff H, Borst JGG (2002) Short-term plasticity at the calyx of Held. Nat Rev Neurosci 3:53–64

    Google Scholar 

  70. Glover JC, Renaud J, Rijli FM (2006) Retinoic acid and hindbrain patterning. J Neurobiol 66:705–725

    CAS  PubMed  Google Scholar 

  71. Goddard JM, Rossel M, Manley NR, Capecchi MR (1996) Mice with targeted disruption of Hoxb-1 fail to form the motor nucleus of the VIIth nerve. Development 122:3217–3228

    CAS  PubMed  Google Scholar 

  72. Golding NL (2012) Neuronal Response Properties and Voltage-Gated Ion Channels in the Auditory System. In: Trussell LO, Popper AN, Fay AN (eds) Synaptic Mechanisms in the Auditory System. Springer, New York, pp 7–41

    Google Scholar 

  73. Gould A, Itasaki N, Krumlauf R (1998) Initiation of rhombomeric Hoxb4 expression requires induction by somites and a retinoid pathway. Neuron 21:39–51

    CAS  PubMed  Google Scholar 

  74. Grothe B (2000) The evolution of temporal processing in the medial superior olive, an auditory brainstem structure. Prog Neurobiol 61:581–610

    CAS  PubMed  Google Scholar 

  75. Grothe B, Carr CE, Casseday JH, Fritzsch B, Köppl C (2004) The Evolution of Central Pathways and Their Neural Processing Patterns. In: Manley GA, Popper AN, Fay RR (eds) Springer handbook of auditory research: evolution of the vertebrate system. Springer, New York, pp 289–359

    Google Scholar 

  76. Grothe B, Pecka M, Mcalpine D (2010) Mechanisms of sound localization in mammals. Physiol Rev 90:983–1012

    CAS  PubMed  Google Scholar 

  77. Gruters KG, Groh JM (2012) Sounds and beyond: multisensory and other non-auditory signals in the inferior colliculus. Front Neural Circuits 6:96

    PubMed Central  PubMed  Google Scholar 

  78. Hatch EP, Noyes CA, Wang X, Wright TJ, Mansour SL (2007) Fgf3 is required for dorsal patterning and morphogenesis of the inner ear epithelium. Development 134:3615–3625

    CAS  PubMed Central  PubMed  Google Scholar 

  79. Held H (1893) Die centrale Gehörleitung. Arch Anat Physiol Anat Arch Anat Physiol, Anat Abt (Archiv für Anatomie und Physiologie, Anatomische Abteilung) 17:201–248

  80. Hernandez RE, Rikhof HA, Bachmann R, Moens CB (2004) vhnf1 integrates global RA patterning and local FGF signals to direct posterior hindbrain development in zebrafish. Development 131:4511–4520

    CAS  PubMed  Google Scholar 

  81. Hirtz JJ, Boesen M, Braun N, Deitmer JW, Kramer F, Lohr C, Muller B, Nothwang HG, Striessnig J, Lohrke S, Friauf E (2011) Cav1.3 calcium channels are required for normal development of the auditory brainstem. J Neurosci 31:8280–8294

    CAS  PubMed  Google Scholar 

  82. Hirtz JJ, Braun N, Griesemer D, Hannes C, Janz K, Lohrke S, Muller B, Friauf E (2012) Synaptic refinement of an inhibitory topographic map in the auditory brainstem requires functional CaV1.3 calcium channels. J Neurosci 32:14602–14616

    CAS  PubMed  Google Scholar 

  83. Hobert O, Carrera I, Stefanakis N (2010) The molecular and gene regulatory signature of a neuron. Trends Neurosci 33:435–445

    CAS  PubMed Central  PubMed  Google Scholar 

  84. Houle M, Prinos P, Iulianella A, Bouchard N, Lohnes D (2000) Retinoic acid regulation of Cdx1: an indirect mechanism for retinoids and vertebral specification. Mol Cell Biol 20:6579–6586

    CAS  PubMed Central  PubMed  Google Scholar 

  85. Howard ML, Davidson EH (2004) cis-Regulatory control circuits in development. Dev Biol 271:109–118

    CAS  PubMed  Google Scholar 

  86. Howell DM, Morgan WJ, Jarjour AA, Spirou GA, Berrebi AS, Kennedy TE, Mathers PH (2007) Molecular guidance cues necessary for axon pathfinding from the ventral cochlear nucleus. J Comp Neurol 504:533–549

    CAS  PubMed  Google Scholar 

  87. Hunt P, Gulisano M, Cook M, Sham MH, Faiella A, Wilkinson D, Boncinelli E, Krumlauf R (1991) A distinct Hox code for the branchial region of the vertebrate head. Nature 353(6347):861–864. doi:10.1038/353861a0

  88. Jacoby J, Rubinson K (1983) The acoustic and lateral line nuclei are distinct in the premetamorphic frog, Rana catesbeiana. J Comp Neurol 216:152–161

    CAS  PubMed  Google Scholar 

  89. Jahan I, Pan N, Kersigo J, Fritzsch B (2010) Neurod1 suppresses hair cell differentiation in ear ganglia and regulates hair cell subtype development in the cochlea. PLoS One 5:e11661

    PubMed Central  PubMed  Google Scholar 

  90. Jalabi W, Kopp-Scheinpflug C, Allen PD, Schiavon E, DiGiacomo RR, Forsythe ID, Maricich SM (2013) Sound Localization Ability and Glycinergic Innervation of the Superior Olivary Complex Persist after Genetic Deletion of the Medial Nucleus of the Trapezoid Body. J Neurosci 33:15044–15049

    CAS  PubMed Central  PubMed  Google Scholar 

  91. Jaramillo MA, Kramer EM (2007) The role of developmental genetics in understanding homology and morphological evolution in plants. Int J Plant Sci 168:61–72

    CAS  Google Scholar 

  92. Johnston J, Forsythe ID, Kopp-Scheinpflug C (2010) Going native: voltage-gated potassium channels controlling neuronal excitability. J Physiol 588:3187–3200

    CAS  PubMed Central  PubMed  Google Scholar 

  93. Kadner A, Kulesza RJ, Berrebi AS (2006) Neurons in the medial nucleus of the trapezoid body and superior paraolivary nucleus of the rat may play a role in sound duration coding. J Neurophysiol 95:1499–1508

    PubMed  Google Scholar 

  94. Kapatos G, Hirayama K, Shimoji M, Milstien S (1999) GTP cyclohydrolase I feedback regulatory protein is expressed in serotonin neurons and regulates tetrahydrobiopterin biosynthesis. J Neurochem 72:669–675

    CAS  PubMed  Google Scholar 

  95. Karis A, Pata I, van Doorninck JH, Grosveld F, Zeeuw CI de, de CD, Fritzsch B (2001) Transcription factor GATA-3 alters pathway selection of olivocochlear neurons and affects morphogenesis of the ear. J Comp Neurol 429:615–630

  96. Katsanis SH, Katsanis N (2013) Molecular genetic testing and the future of clinical genomics. Nat Rev Genet 14(6):415–426. doi:10.1038/nrg3493

  97. Kayam G, Kohl A, Magen Z, Peretz Y, Weisinger K, Bar A, Novikov O, Brodski C, Sela-Donenfeld D (2013) A novel role for Pax6 in the segmental organization of the hindbrain. Development 140:2190–2202

    CAS  PubMed  Google Scholar 

  98. Khan MAF, Soto-Jimenez LM, Howe T, Streit A, Sosinsky A, Stern CD (2013) Computational tools and resources for prediction and analysis of gene regulatory regions in the chick genome. Genesis:1–14

  99. Kim EJ, Hori K, Wyckoff A, Dickel LK, Koundakjian EJ, Goodrich LV, Johnson JE (2011) Spatiotemporal fate map of neurogenin1 (Neurog1) lineages in the mouse central nervous system. J Comp Neurol 519:1355–1370

    CAS  PubMed Central  PubMed  Google Scholar 

  100. Kim FA, Sing LA, Kaneko T, Bieman M, Stallwood N, Sadl VS, Cordes SP (2005) The vHNF1 homeodomain protein establishes early rhombomere identity by direct regulation of Kreisler expression. Mech Dev 122:1300–1309

    CAS  PubMed  Google Scholar 

  101. Kim WY, Fritzsch B, Serls A, Bakel LA, Huang EJ, Reichardt LF, Barth DS, Lee JE (2001) NeuroD-null mice are deaf due to a severe loss of the inner ear sensory neurons during development. Development 128:417–426

    CAS  PubMed Central  PubMed  Google Scholar 

  102. Krumlauf R, Marshall H, Studer M, Nonchev S, Sham MH, Lumsden A (1993) Hox homeobox genes and regionalisation of the nervous system. J Neurobiol 24:1328–1340

    CAS  PubMed  Google Scholar 

  103. Kwak S, Phillips BT, Heck R, Riley BB (2002) An expanded domain of fgf3 expression in the hindbrain of zebrafish valentino mutants results in mis-patterning of the otic vesicle. Development 129:5279–5287

    CAS  PubMed  Google Scholar 

  104. Landsberg RL, Awatramani RB, Hunter NL, Farago AF, DiPietrantonio HJ, Rodriguez CI, Dymecki SM (2005) Hindbrain rhombic lip is comprised of discrete progenitor cell populations allocated by Pax6. Neuron 48:933–947

    CAS  PubMed  Google Scholar 

  105. Larsell O (1934) The differentiation or the peripheral and central acoustic apparatus im the frog. J Comp Neurol:473–527

  106. Lecaudey V, Anselme I, Rosa F, Schneider-Maunoury S (2004) The zebrafish Iroquois gene iro7 positions the r4/r5 boundary and controls neurogenesis in the rostral hindbrain. Development 131:3121–3131

    CAS  PubMed  Google Scholar 

  107. Li W, Kaczmarek LK, Perney TM (2001) Localization of two high-threshold potassium channel subunits in the rat central auditory system. J Comp Neurol 437:196–218

    CAS  PubMed  Google Scholar 

  108. Liu M, Pereira FA, Price SD, Chu MJ, Shope C, Himes D, Eatock RA, Brownell WE, Lysakowski A, Tsai MJ (2000) Essential role of BETA2/NeuroD1 in development of the vestibular and auditory systems. Genes Dev 14:2839–2854

    CAS  PubMed Central  PubMed  Google Scholar 

  109. Liu S, Li W, Chen Y, Lin Q, Wang Z, Li H (2011) Mouse auditory organ development required bone morphogenetic protein signaling. Neuro Report 22:396–401

    CAS  Google Scholar 

  110. Lorente-Cánovas B, Marín F, Corral-San-Miguel R, Hidalgo-Sánchez M, Ferrán JL, Puelles L, Aroca P (2012) Multiple origins, migratory paths and molecular profiles of cells populating the avian interpeduncular nucleus. Dev Biol 361:12–26

    PubMed  Google Scholar 

  111. Louvi A, Yoshida M, Grove EA (2007) The derivatives of the Wnt3a lineage in the central nervous system. J Comp Neurol 504:550–569

    PubMed  Google Scholar 

  112. Ma Q, Chen Z, del, Barco Barrantes I, de la Pompa JL, Anderson DJ (1998) Neurogenin1 is essential for the determination of neuronal precursors for proximal cranial sensory ganglia. Neuron 20:469–482

  113. Machold R, Fishell G (2005) Math1 is expressed in temporally discrete pools of cerebellar rhombic-lip neural progenitors. Neuron 48:17–24

    CAS  PubMed  Google Scholar 

  114. Macleod KM, Carr CE (2012) Synaptic Mechanisms of Coincidence Detection. In: Trussell LO, Popper AN, Fay AN (eds) Synaptic mechanisms in the auditory system. Springer, New York, pp 135–164

    Google Scholar 

  115. Maconochie MK, Nonchev S, Studer M, Chan SK, Pöpperl H, Sham MH, Mann RS, Krumlauf R (1997) Cross-regulation in the mouse HoxB complex: the expression of Hoxb2 in rhombomere 4 is regulated by Hoxb1. Genes Dev 11(14):1885–1895

  116. Maden M (2002) Retinoid signalling in the development of the central nervous system. Nat Rev Neurosci 3:843–853

    CAS  PubMed  Google Scholar 

  117. Manis PB, Xie R, Wang Y, Marrs GS, Spirou GA (2012) The Endbulbs of Held. In: Trussell LO, Popper AN, Fay AN (eds) Synaptic mechanisms in the auditory system. Springer, New York, pp 61–93

    Google Scholar 

  118. Mann RS, Carroll SB (2002) Molecular mechanisms of selector gene function and evolution. Curr Opin Genet Dev 12:592–600

    CAS  PubMed  Google Scholar 

  119. Manzanares M, Cordes S, Kwan CT, Sham MH, Barsh GS, Krumlauf R (1997) Segmental regulation of hoxb-3 by kreisler. Nature 387:191–195

    CAS  PubMed  Google Scholar 

  120. Manzanares M, Nardelli J, Gilardi-Hebenstreit P, Marshall H, Giudicelli F, Martinez-Pastor MT, Krumlauf R, Charnay P (2002) Krox20 and kreisler co-operate in the transcriptional control of segmental expression of Hoxb3 in the developing hindbrain. EMBO J 21:365–376

    CAS  PubMed Central  PubMed  Google Scholar 

  121. Manzanares M, Trainor PA, Nonchev S, Ariza-McNaughton L, Brodie J, Gould A, Marshall H, Morrison A, Kwan CT, Sham MH, Wilkinson DG, Krumlauf R (1999) The role of kreisler in segmentation during hindbrain development. Dev Biol 211:220–237

    CAS  PubMed  Google Scholar 

  122. Maricich SM, Xia A, Mathes EL, Wang VY, Oghalai JS, Fritzsch B, Zoghbi HY (2009) Atoh1-lineal neurons are required for hearing and for the survival of neurons in the spiral ganglion and brainstem accessory auditory nuclei. J Neurosci 29:11123–11133

    CAS  PubMed Central  PubMed  Google Scholar 

  123. Marin F, Charnay P (2000) Hindbrain patterning: FGFs regulate Krox20 and mafB/kr expression in the otic/preotic region. Development 127:4925–4935

    CAS  PubMed  Google Scholar 

  124. Marin F, Puelles L (1995) Morphological fate of rhombomeres in quail/chick chimeras: a segmental analysis of hindbrain nuclei. Eur J Neurosci 7:1714–1738

    CAS  PubMed  Google Scholar 

  125. Marín F, Aroca P, Puelles L (2008) Hox gene colinear expression in the avian medulla oblongata is correlated with pseudorhombomeric domains. Dev Biol 323:230–247

    PubMed  Google Scholar 

  126. Mark M, Ghyselinck NB, Chambon P (2009) Function of retinoic acid receptors during embryonic development. Nucl Recept Signal 7:e002

    PubMed Central  PubMed  Google Scholar 

  127. Marrs GS, Morgan WJ, Howell DM, Spirou GA, Mathers PH (2013) Embryonic origins of the mouse superior olivary complex. Dev Neurobiol:384–398

  128. Martínez S (2001) The isthmic organizer and brain regionalization. Int J Dev Biol 45:367–371

    PubMed  Google Scholar 

  129. Matei V, Pauley S, Kaing S, Rowitch D, Beisel KW, Morris K, Feng F, Jones K, Lee J, Fritzsch B (2005) Smaller inner ear sensory epithelia in Neurog 1 null mice are related to earlier hair cell cycle exit. Dev Dyn 234:633–650

    CAS  PubMed Central  PubMed  Google Scholar 

  130. Maves L, Jackman W, Kimmel CB (2002) FGF3 and FGF8 mediate a rhombomere 4 signaling activity in the zebrafish hindbrain. Development 129:3825–3837

    CAS  PubMed  Google Scholar 

  131. McCormick CA (1999) Anatomy of the central auditory pathways of fish and amphibian. In: Fay RR, Popper AN (eds) Comparative hearing: fish and amphibians. Springer, New York, pp 155–217

    Google Scholar 

  132. McGettigan PA (2013) Transcriptomics in the RNA-seq era. Curr Opin Chem Biol 17:4–11

    CAS  PubMed  Google Scholar 

  133. McKay IJ, Lewis J, Lumsden A (1996) The role of FGF-3 in early inner ear development: an analysis in normal and kreisler mutant mice. Dev Biol 174:370–378

    CAS  PubMed  Google Scholar 

  134. McKay IJ, Muchamore I, Krumlauf R, Maden M, Lumsden A, Lewis J (1994) The kreisler mouse: a hindbrain segmentation mutant that lacks two rhombomeres. Development 120:2199–2211

    CAS  PubMed  Google Scholar 

  135. Mechta-Grigoriou F, Garel S, Charnay P (2000) Nab proteins mediate a negative feedback loop controlling Krox-20 activity in the developing hindbrain. Development 127:119–128

    CAS  PubMed  Google Scholar 

  136. Mic FA, Molotkov A, Benbrook DM, Duester G (2003) Retinoid activation of retinoic acid receptor but not retinoid X receptor is sufficient to rescue lethal defect in retinoic acid synthesis. Proc Natl Acad Sci USA 100(12):7135–7140. doi:10.1073/pnas.1231422100

  137. Michna M, Knirsch M, Hoda JC, Muenkner S, Langer P, Platzer J, Striessnig J, Engel J (2003) Cav1.3 (alpha1D) Ca2+ currents in neonatal outer hair cells of mice. J Physiol 553:747–758

    CAS  PubMed Central  PubMed  Google Scholar 

  138. Moreno-Bravo JA, Perez-Balaguer A, Martinez-Lopez JE, Aroca P, Puelles L, Martinez S, Puelles E (2014) Role of Shh in the development of molecularly characterized tegmental nuclei in mouse rhombomere 1. Brain Struct Funct 219:777–792

    CAS  PubMed  Google Scholar 

  139. Murphy P, Davidson DR, Hill RE (1989) Segment-specific expression of a homoeobox-containing gene in the mouse hindbrain. Nature 341:156–159

    CAS  PubMed  Google Scholar 

  140. Murphy P, Hill RE (1991) Expression of the mouse labial-like homeobox-containing genes, Hox 2.9 and Hox 1.6, during segmentation of the hindbrain. Development 111:61–74

    CAS  PubMed  Google Scholar 

  141. Neves J, Uchikawa M, Bigas A, Giraldez F (2012) The prosensory function of Sox2 in the chicken inner ear relies on the direct regulation of Atoh1. PLoS One 7:e30871

    CAS  PubMed Central  PubMed  Google Scholar 

  142. Nichols DH, Bruce LL (2006) Migratory routes and fates of cells transcribing the Wnt-1 gene in the murine hindbrain. Dev Dyn 235:285–300

    CAS  PubMed  Google Scholar 

  143. Niederreither K, Vermot J, Schuhbaur B, Chambon P, Dollé P (2000) Retinoic acid synthesis and hindbrain patterning in the mouse embryo. Development 127:75–85

    CAS  PubMed  Google Scholar 

  144. Nolte C, Amores A, Nagy Kovacs E, Postlethwait J, Featherstone M (2003) The role of a retinoic acid response element in establishing the anterior neural expression border of Hoxd4 transgenes. Mech Dev 120:325–335

    CAS  PubMed  Google Scholar 

  145. Nonchev S, Maconochie M, Vesque C, Aparicio S, riza-McNaughton L, Manzanares M, Maruthainar K, Kuroiwa A, Brenner S, Charnay P, Krumlauf R (1996) The conserved role of Krox-20 in directing Hox gene expression during vertebrate hindbrain segmentation. Proc Natl Acad Sci USA 93:9339–9345

    CAS  PubMed Central  PubMed  Google Scholar 

  146. Oertel D (1997) Encoding of timing in the brain stem auditory nuclei of vertebrates. Neuron 19:959–962

    CAS  PubMed  Google Scholar 

  147. Oertel D (2009) A team of potassium channels tunes up auditory neurons. J Physiol 587:2417–2418

    CAS  PubMed Central  PubMed  Google Scholar 

  148. Ohyama T, Basch ML, Mishina Y, Lyons KM, Segil N, Groves AK (2010) BMP signaling is necessary for patterning the sensory and nonsensory regions of the developing mammalian cochlea. J Neurosci 30:15044–15051

    CAS  PubMed Central  PubMed  Google Scholar 

  149. Ørvlg T (1971) Comments on the lateral line system of some brachythoracid and ptyctodontid arthrodires. Zool Scripta 1:5–35

    Google Scholar 

  150. Oury F, Murakami Y, Renaud JS, Pasqualetti M, Charnay P, Ren SY, Rijli FM (2006) Hoxa2- and rhombomere-dependent development of the mouse facial somatosensory map. Science 313:1408–1413

    CAS  PubMed  Google Scholar 

  151. Palfery TD, Duff D (2007) Central auditory processing disorders: review and case study. Axone 28:20–23

    PubMed  Google Scholar 

  152. Pan N, Jahan I, Kersigo J, Duncan JS, Kopecky B, Fritzsch B (2012) A novel Atoh1 “self-terminating” mouse model reveals the necessity of proper Atoh1 level and duration for hair cell differentiation and viability. PLoS One 7:e30358

    CAS  PubMed Central  PubMed  Google Scholar 

  153. Pan N, Jahan I, Kersigo J, Kopecky B, Santi P, Johnson S, Schmitz H, Fritzsch B (2011) Conditional deletion of Atoh1 using Pax2-Cre results in viable mice without differentiated cochlear hair cells that have lost most of the organ of Corti. Hear Res 275:66–80

    CAS  PubMed Central  PubMed  Google Scholar 

  154. Parameshwaran S, Carr CE, Perney TM (2001) Expression of the Kv3.1 potassium channel in the avian auditory brainstem. J Neurosci 21:485–494

    CAS  PubMed  Google Scholar 

  155. Parks TN (1981) Morphology of axosomatic endings in an avian cochlear nucleus: nucleus magnocellularis of the chicken. J Comp Neurol 203:425–440

    CAS  PubMed  Google Scholar 

  156. Pata I, Studer M, van Doorninck JH, Briscoe J, Kuuse S, Engel JD, Grosveld F, Karis A (1999) The transcription factor GATA3 is a downstream effector of Hoxb1 specification in rhombomere 4. Development 126:5523–5531

    CAS  PubMed  Google Scholar 

  157. Patel NH, Ball EE, Goodman CS (1992) Changing role of even-skipped during the evolution of insect pattern formation. Nature 357:339–342

    CAS  PubMed  Google Scholar 

  158. Pattyn A, Vallstedt A, Dias JM, Samad OA, Krumlauf R, Rijli FM, Brunet J, Ericson J (2003) Coordinated temporal and spatial control of motor neuron and serotonergic neuron generation from a common pool of CNS progenitors. Genes Dev 17:729–737

    CAS  PubMed Central  PubMed  Google Scholar 

  159. Pecka M, Zahn TP, Saunier-Rebori B, Siveke I, Felmy F, Wiegrebe L, Klug A, Pollak GD, Grothe B (2007) Inhibiting the inhibition: a neuronal network for sound localization in reverberant environments. J Neurosci 27:1782–1790

    CAS  PubMed  Google Scholar 

  160. Platzer J, Engel J, Schrott-Fischer A, Stephan K, Bova S, Chen H, Zheng H, Striessnig J (2000) Congenital deafness and sinoatrial node dysfunction in mice lacking class D L-type Ca2 + channels. Cell 102:89–97

    CAS  PubMed  Google Scholar 

  161. Pouilhe M, Gilardi-Hebenstreit P, Desmarquet-Trin Dinh C, Charnay P (2007) Direct regulation of vHnf1 by retinoic acid signaling and MAF-related factors in the neural tube. Dev Biol 309:344–357

    CAS  PubMed  Google Scholar 

  162. Prince V, Lumsden A (1994) Hoxa-2 expression in normal and transposed rhombomeres: independent regulation in the neural tube and neural crest. Development 120:911–923

    CAS  PubMed  Google Scholar 

  163. Prinos P, Joseph S, Oh K, Meyer BI, Gruss P, Lohnes D (2001) Multiple pathways governing Cdx1 expression during murine development. Dev Biol 239:257–269

    CAS  PubMed  Google Scholar 

  164. Pujades C, Kamaid A, Alsina B, Giraldez F (2006) BMP-signaling regulates the generation of hair-cells. Dev Biol 292:55–67

    CAS  PubMed  Google Scholar 

  165. Qiu R, Liu Y, Wu JY, Liu K, Mo W, He R (2009) Misexpression of miR-196a induces eye anomaly in Xenopus laevis. Brain Res Bull 79:26–31

    CAS  PubMed  Google Scholar 

  166. Raft S, Koundakjian EJ, Quinones H, Jayasena CS, Goodrich LV, Johnson JE, Segil N, Groves AK (2007) Cross-regulation of Ngn1 and Math1 coordinates the production of neurons and sensory hair cells during inner ear development. Development 134:4405–4415

    CAS  PubMed  Google Scholar 

  167. Raman IM, Zhang S, Trussell LO (1994) Pathway-specific variants of AMPA receptors and their contribution to neuronal signaling. J Neurosci 14:4998–5010

    CAS  PubMed  Google Scholar 

  168. Ren S, Angrand P, Rijli FM (2002) Targeted insertion results in a rhombomere 2-specific Hoxa2 knockdown and ectopic activation of Hoxa1 expression. Dev Dyn 225:305–315

    CAS  PubMed  Google Scholar 

  169. Rose MF, Ahmad KA, Thaller C, Zoghbi HY (2009) Excitatory neurons of the proprioceptive, interoceptive, and arousal hindbrain networks share a developmental requirement for Math1. Proc Natl Acad Sci USA 106:22462–22467

    CAS  PubMed Central  PubMed  Google Scholar 

  170. Rosengauer E, Hartwich H, Hartmann AM, Rudnicki A, Satheesh SV, Avraham KB, Nothwang HG (2012) Egr2:Cre mediated conditional ablation of dicer disrupts histogenesis of Mammalian Central Auditory Nuclei. PLoS One 7:e49503

    CAS  PubMed Central  PubMed  Google Scholar 

  171. Rossant J, Zirngibl R, Cado D, Shago M, Giguere V (1991) Expression of a retinoic acid response element-hsplacZ transgene defines specific domains of transcriptional activity during mouse embryogenesis. Genes Dev 5:1333–1344

    CAS  PubMed  Google Scholar 

  172. Rossel M, Capecchi MR (1999) Mice mutant for both Hoxa1 and Hoxb1 show extensive remodeling of the hindbrain and defects in craniofacial development. Development 126:5027–5040

    CAS  PubMed  Google Scholar 

  173. Rubel EW, Smith D, Miller LC (1976) Organization and development of brain stem auditory nuclei of the chicken: ontogeny of N. magnocellularis and N. laminaris. J Comp Neurol 166:469–490

    CAS  PubMed  Google Scholar 

  174. Russo MW, Sevetson BR, Milbrandt J (1995) Identification of NAB1, a repressor of NGFI-A- and Krox20-mediated transcription. Proc Natl Acad Sci USA 92:6873–6877

    CAS  PubMed Central  PubMed  Google Scholar 

  175. Sadl VS, Sing A, Mar L, Jin F, Cordes SP (2003) Analysis of hindbrain patterning defects caused by the kreisler(enu) mutation reveals multiple roles of Kreisler in hindbrain segmentation. Dev Dyn 227:134–142

    CAS  PubMed  Google Scholar 

  176. Sakai Y, Meno C, Fujii H, Nishino J, Shiratori H, Saijoh Y, Rossant J, Hamada H (2001) The retinoic acid-inactivating enzyme CYP26 is essential for establishing an uneven distribution of retinoic acid along the anterio-posterior axis within the mouse embryo. Genes Dev 15:213–225

    CAS  PubMed Central  PubMed  Google Scholar 

  177. Samad OA, Geisen MJ, Caronia G, Varlet I, Zappavigna V, Ericson J, Goridis C, Rijli FM (2004) Integration of anteroposterior and dorsoventral regulation of Phox2b transcription in cranial motoneuron progenitors by homeodomain proteins. Development 131:4071–4083

    CAS  PubMed  Google Scholar 

  178. Satheesh SV, Kunert K, Ruttiger L, Zuccotti A, Schonig K, Friauf E, Knipper M, Bartsch D, Nothwang HG (2012) Retrocochlear function of the peripheral deafness gene Cacna1d. Hum Mol Genet 21:3896–3909

    CAS  PubMed  Google Scholar 

  179. Schneider BF, Norton S (1979) Equivalent ages in rat, mouse and chick embryos. Teratology 19:273–278

    CAS  PubMed  Google Scholar 

  180. Schneider-Maunoury S, Seitanidou T, Charnay P, Lumsden A (1997) Segmental and neuronal architecture of the hindbrain of Krox-20 mouse mutants. Development 124:1215–1226

    CAS  PubMed  Google Scholar 

  181. Seitanidou T, Schneider-Maunoury S, Desmarquet C, Wilkinson DG, Charnay P (1997) Krox-20 is a key regulator of rhombomere-specific gene expression in the developing hindbrain. Mech Dev 65:31–42

    CAS  PubMed  Google Scholar 

  182. Sham MH, Vesque C, Nonchev S, Marshall H, Frain M, Gupta RD, Whiting J, Wilkinson D, Charnay P, Krumlauf R (1993) The zinc finger gene Krox20 regulates HoxB2 (Hox2.8) during hindbrain segmentation. Cell 72:183–196

    CAS  PubMed  Google Scholar 

  183. Shubin N, Tabin C, Carroll S (1997) Fossils, genes and the evolution of animal limbs. Nature 388:639–648

    CAS  PubMed  Google Scholar 

  184. Shubin N, Tabin C, Carroll S (2009) Deep homology and the origins of evolutionary novelty. Nature 457:818–823

    CAS  PubMed  Google Scholar 

  185. Sirbu IO, Gresh L, Barra J, Duester G (2005) Shifting boundaries of retinoic acid activity control hindbrain segmental gene expression. Development 132:2611–2622

    CAS  PubMed Central  PubMed  Google Scholar 

  186. Smith DJ, Rubel EW (1979) Organization and development of brain stem auditory nuclei of the chicken: dendritic gradients in nucleus laminaris. J Comp Neurol 186:213–239

    CAS  PubMed  Google Scholar 

  187. Smith PH, Spirou GA (2002) From the Cochlea to the Cortex and Back. In: Oertel D, Fay RR, Popper AN (eds) Integrative functions in the mammalian auditory pathway. Springer, New York, pp 6–71

    Google Scholar 

  188. Stotler WA (1953) An experimental study of the cells and connections of the superior olivary complex of the cat. J Comp Neurol. 98:401–431

    CAS  PubMed  Google Scholar 

  189. Studer M, Gavalas A, Marshall H, Ariza-McNaughton L, Rijli FM, Chambon P, Krumlauf R (1998) Genetic interactions between Hoxa1 and Hoxb1 reveal new roles in regulation of early hindbrain patterning. Development 125:1025–1036

    CAS  PubMed  Google Scholar 

  190. Studer M, Lumsden A, Ariza-McNaughton L, Bradley A, Krumlauf R (1996) Altered segmental identity and abnormal migration of motor neurons in mice lacking Hoxb-1. Nature 384:630–634

    CAS  PubMed  Google Scholar 

  191. Sturgeon K, Kaneko T, Biemann M, Gauthier A, Chawengsaksophak K, Cordes SP (2011) Cdx1 refines positional identity of the vertebrate hindbrain by directly repressing Mafb expression. Development 138:65–74

    CAS  PubMed  Google Scholar 

  192. Sun Z, Hopkins N (2001) vhnf1, the MODY5 and familial GCKD-associated gene, regulates regional specification of the zebrafish gut, pronephros, and hindbrain. Genes Dev 15:3217–3229

    CAS  PubMed Central  PubMed  Google Scholar 

  193. Sundin OH, Eichele G (1990) A homeo domain protein reveals the metameric nature of the developing chick hindbrain. Genes Dev 4:1267–1276

    CAS  PubMed  Google Scholar 

  194. Svaren J, Sevetson BR, Apel ED, Zimonjic DB, Popescu NC, Milbrandt J (1996) NAB2, a corepressor of NGFI-A (Egr-1) and Krox20, is induced by proliferative and differentiative stimuli. Mol Cell Biol 16:3545–3553

    CAS  PubMed Central  PubMed  Google Scholar 

  195. Szeto I, Leung K, Sham M, Cheah K (2009) Utility of HoxB2 enhancer-mediated Cre activity for functional studies in the developing inner ear. Genesis 47:361–365

    CAS  PubMed  Google Scholar 

  196. Takahashi M, Osumi N (2011) Pax6 regulates boundary-cell specification in the rat hindbrain. Mech Dev 128:289–302

    CAS  PubMed  Google Scholar 

  197. Taneja R, Thisse B, Rijli FM, Thisse C, Bouillet P, Dolle P, Chambon P (1996) The expression pattern of the mouse receptor tyrosine kinase gene MDK1 is conserved through evolution and requires Hoxa-2 for rhombomere-specific expression in mouse embryos. Dev Biol 177:397–412

    CAS  PubMed  Google Scholar 

  198. Taschenberger H, von Gersdorff H (2000) Fine-tuning an auditory synapse for speed and fidelity: developmental changes in presynaptic waveform, EPSC kinetics, and synaptic plasticity. J Neurosci 20:9162–9173

    CAS  PubMed  Google Scholar 

  199. Theil T, Ariza-McNaughton L, Manzanares M, Brodie J, Krumlauf R, Wilkinson DG (2002) Requirement for downregulation of kreisler during late patterning of the hindbrain. Development 129:1477–1485

    CAS  PubMed  Google Scholar 

  200. Theil T, Frain M, Gilardi-Hebenstreit P, Flenniken A, Charnay P, Wilkinson DG (1998) Segmental expression of the EphA4 (Sek-1) receptor tyrosine kinase in the hindbrain is under direct transcriptional control of Krox-20. Development 125:443–452

    CAS  PubMed  Google Scholar 

  201. Trussell LO (1999) Synaptic mechanisms for coding timing in auditory neurons. Annu Rev Physiol 61:477–496

    CAS  PubMed  Google Scholar 

  202. Tsuchitani C (1997) Input from the medial nucleus of trapezoid body to an interaural level detector. Hear Res 105:211–224

    CAS  PubMed  Google Scholar 

  203. Tümpel S, Cambronero F, Ferretti E, Blasi F, Wiedemann LM, Krumlauf R (2007) Expression of Hoxa2 in rhombomere 4 is regulated by a conserved cross-regulatory mechanism dependent upon Hoxb1. Dev Biol 302:646–660

    PubMed  Google Scholar 

  204. Tümpel S, Cambronero F, Sims C, Krumlauf R, Wiedemann LM (2008) A regulatory module embedded in the coding region of Hoxa2 controls expression in rhombomere 2. Proc Natl Acad Sci USA 105:20077–20082

    PubMed Central  PubMed  Google Scholar 

  205. Tümpel S, Maconochie M, Wiedemann LM, Krumlauf R (2002) Conservation and diversity in the cis-regulatory networks that integrate information controlling expression of Hoxa2 in hindbrain and cranial neural crest cells in vertebrates. Dev Biol 246:45–56

    PubMed  Google Scholar 

  206. Tümpel S, Wiedemann LM, Krumlauf R (2009) Hox genes and segmentation of the vertebrate hindbrain. Curr Top Dev Biol 88:103–137

    PubMed  Google Scholar 

  207. Vesque C, Maconochie M, Nonchev S, Ariza-McNaughton L, Kuroiwa A, Charnay P, Krumlauf R (1996) Hoxb-2 transcriptional activation in rhombomeres 3 and 5 requires an evolutionarily conserved cis-acting element in addition to the Krox-20 binding site. EMBO J 15:5383–5396

    CAS  PubMed Central  PubMed  Google Scholar 

  208. Vieira C, Pombero A, García-Lopez R, Gimeno L, Echevarria D, Martínez S (2010) Molecular mechanisms controlling brain development: an overview of neuroepithelial secondary organizers. Int J Dev Biol 54:7–20

    CAS  PubMed  Google Scholar 

  209. Wagner GP (2007) The developmental genetics of homology. Nat Rev Genet 8:473–479

    CAS  PubMed  Google Scholar 

  210. Walshe J, Maroon H, McGonnell IM, Dickson C, Mason I (2002) Establishment of hindbrain segmental identity requires signaling by FGF3 and FGF8. Curr Biol 12:1117–1123

    CAS  PubMed  Google Scholar 

  211. Wang VY, Rose MF, Zoghbi HY (2005) Math1 expression redefines the rhombic lip derivatives and reveals novel lineages within the brainstem and cerebellum. Neuron 48:31–43

    CAS  PubMed  Google Scholar 

  212. Wang Z, Gerstein M, Snyder M (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10:57–63

    CAS  PubMed Central  PubMed  Google Scholar 

  213. Webster DB (1992) An overview of mammalian auditory pathways with an emphasis on humans. In: Webster DB, Popper AN, Fay RR (eds) The mammalian auditory pathway: neuroanatomy. Springer, New York, pp 1–22

    Google Scholar 

  214. Weisinger K, Kayam G, Missulawin-Drillman T, Sela-Donenfeld D (2010) Analysis of expression and function of FGF-MAPK signaling components in the hindbrain reveals a central role for FGF3 in the regulation of Krox20, mediated by Pea3. Dev Biol 344:881–895

    CAS  PubMed  Google Scholar 

  215. Wendling O, Ghyselinck NB, Chambon P, Mark M (2001) Roles of retinoic acid receptors in early embryonic morphogenesis and hindbrain patterning. Development 128:2031–2038

    CAS  PubMed  Google Scholar 

  216. Wiellette EL, Sive H (2004) Early requirement for fgf8 function during hindbrain pattern formation in zebrafish. Dev Dyn 229:393–399

    CAS  PubMed  Google Scholar 

  217. Wilkinson DG, Bhatt S, Chavrier P, Bravo R, Charnay P (1989) Segment-specific expression of a zinc-finger gene in the developing nervous system of the mouse. Nature 337:461–464

    CAS  PubMed  Google Scholar 

  218. Will U, Luhede G, Görner P (1985) The area octavo-lateralis in Xenopus laevis. Cell Tissue Res 239:163–175

    Google Scholar 

  219. Willaredt MA, Ebbers L, Nothwang HG (2014) Central auditory function of deafness genes. Hear Res 312C:9–20

    Google Scholar 

  220. Wong EY, Wang XA, Mak SS, Sae-Pang JJ, KW L, Fritzsch B, Sham MH (2011) Hoxb3 negatively regulates Hoxb1 expression in mouse hindbrain patterning. Dev Biol 352:382–392

    CAS  PubMed  Google Scholar 

  221. Wright TJ, Mansour SL (2003) Fgf3 and Fgf10 are required for mouse otic placode induction. Development 130:3379–3390

    CAS  PubMed  Google Scholar 

  222. Wu SH, Kelly JB (1993) Response of neurons in the lateral superior olive and medial nucleus of the trapezoid body to repetitive stimulation: intracellular and extracellular recordings from mouse brain slice. Hear Res 68:189–201

    CAS  PubMed  Google Scholar 

  223. Wullimann MF, Mueller T, Distel M, Babaryka A, Grothe B, Köster RW (2011) The long adventurous journey of rhombic lip cells in jawed vertebrates: a comparative developmental analysis. Front Neuroanat 5:1–27

    Google Scholar 

  224. Wurst W, Bally-Cuif L (2001) Neural plate patterning: upstream and downstream of the isthmic organizer. Nat Rev Neurosci 2:99–108

    CAS  PubMed  Google Scholar 

  225. Xiao L, Michalski N, Kronander E, Gjoni E, Genoud C, Knott G, Schneggenburger R (2013) BMP signaling specifies the development of a large and fast CNS synapse. Nat Neurosci 16:856–864

    CAS  PubMed  Google Scholar 

  226. Yan D, Tekin M, Blanton SH, Liu XZ (2013) Next-generation sequencing in genetic hearing loss. Genet Test Mol Biomarkers 17:581–587

    CAS  PubMed Central  PubMed  Google Scholar 

  227. Yin TCT (2002) Neural mechanisms of encoding binaural localization cues in the auditory brainstem. In: Oertel D, Fay RR, Popper AA (eds) Springer handbook of auditory research: integrative functions in the mammalian auditory pathway. Springer, New York, pp 99–159

    Google Scholar 

  228. Yu W, Appler JM, Kim Y, Nishitani AM, Holt JR, Goodrich LV (2013) A Gata3-Mafb transcriptional network directs post-synaptic differentiation in synapses specialized for hearing. Elife 2:e01341

    PubMed Central  PubMed  Google Scholar 

  229. Zervas M, Millet S, Ahn S, Joyner AL (2004) Cell behaviors and genetic lineages of the mesencephalon and rhombomere 1. Neuron 43:345–357

    CAS  PubMed  Google Scholar 

  230. Zhang M, Kim HJ, Marshall H, Gendron-Maguire M, Lucas DA, Baron A, Gudas LJ, Gridley T, Krumlauf R, Grippo JF (1994) Ectopic Hoxa-1 induces rhombomere transformation in mouse hindbrain. Development 120:2431–2442

    CAS  PubMed  Google Scholar 

  231. Zittlau KE, Claas B, Münz H (1986) Directional sensitivity of lateral line units in the clawed toadXenopus laevis Daudin. J Comp Physiol 158:469–477

    Google Scholar 

Download references

Acknowledgments

We thank Geoff Manley for helpful discussions and input to this paper. We also acknowledge insightful comments from two anonymous reviewers. M.A. Willaredt is financed by the Cluster of Excellence Hearing4all, and T. Schlüter by the Research Training Group Molecular Basis of Sensory Biology GRK 1885/1.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Marc A. Willaredt or Hans Gerd Nothwang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Willaredt, M.A., Schlüter, T. & Nothwang, H.G. The gene regulatory networks underlying formation of the auditory hindbrain. Cell. Mol. Life Sci. 72, 519–535 (2015). https://doi.org/10.1007/s00018-014-1759-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-014-1759-0

Keywords

Navigation