Skip to main content

Advertisement

Log in

Molecular mechanisms of dopaminergic subset specification: fundamental aspects and clinical perspectives

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Dopaminergic (DA) neurons in the ventral mesodiencephalon control locomotion and emotion and are affected in psychiatric and neurodegenerative diseases, such as Parkinson’s disease (PD). A clinical hallmark of PD is the specific degeneration of DA neurons located within the substantia nigra (SNc), whereas neurons in the ventral tegmental area remain unaffected. Recent advances have highlighted that the selective vulnerability of the SNc may originate in subset-specific molecular programming during DA neuron development, and significantly increased our understanding of the molecular code that drives specific SNc development. We here present an up-to-date overview of molecular mechanisms that direct DA subset specification, integrating our current knowledge about subset-specific roles of transcription factors, signaling pathways and morphogenes. We discuss strategies to further unravel subset-specific gene-regulatory networks, and the clinical promise of fundamental knowledge about subset specification of DA neurons, with regards to cell replacement therapy and cell-type-specific vulnerability in PD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

CNS:

Central nervous system

DA:

Dopaminergic

DOPAC:

Dihydroxyphenylacetic acid

DOPAL:

Dihydroxyphenylacetaldehyde

ESCs:

Embryonic stem cells

FACS:

Fluorescence-activated cell sorting

GABA:

Gamma-aminobutyric acid

GFP:

Green fluorescent protein

iPSCs:

Inducible pluripotent stem cells

IsO:

Isthmic organizer

mdDA:

Mesodiencephalic dopaminergic

miRNA:

microRNA

GRN:

Gene-regulatory network

MHB:

Mid-hindbrain border

P1/2/3:

Prosomere 1/2/3

PD:

Parkinson’s disease

R3/5:

Rhombomere 3/5

RA:

Retinoic acid

SCs:

Stem cells

SNc:

Substantia nigra, pars compacta

TF:

Transcription factor

VTA:

Ventral tegmental area

References

  1. Hirsch E, Graybiel AM, Agid YA (1988) Melanized dopaminergic neurons are differentially susceptible to degeneration in Parkinson’s disease. Nature 334:345–348. doi:10.1038/334345a0

    CAS  PubMed  Google Scholar 

  2. Lees AJ, Hardy J, Revesz T (2009) Parkinson’s disease. Lancet 373:2055–2066. doi:10.1016/S0140-6736(09)60492-X

    CAS  PubMed  Google Scholar 

  3. Smidt MP, Burbach JPH (2007) How to make a mesodiencephalic dopaminergic neuron. Nat Rev Neurosci 8:21–32. doi:10.1038/nrn2039

    CAS  PubMed  Google Scholar 

  4. Smits SM, Burbach JPH, Smidt MP (2006) Developmental origin and fate of meso-diencephalic dopamine neurons. Prog Neurobiol 78:1–16. doi:10.1016/j.pneurobio.2005.12.003

    CAS  PubMed  Google Scholar 

  5. Ang S-L (2009) Foxa1 and Foxa2 transcription factors regulate differentiation of midbrain dopaminergic neurons. Adv Exp Med Biol 651:58–65

    CAS  PubMed  Google Scholar 

  6. Alves dos Santos MTM, Smidt MP (2011) En1 and Wnt signaling in midbrain dopaminergic neuronal development. Neural Dev 6:23. doi:10.1186/1749-8104-6-23

    CAS  PubMed Central  PubMed  Google Scholar 

  7. Hegarty SV, Sullivan AM, O’Keeffe GW (2013) Midbrain dopaminergic neurons: a review of the molecular circuitry that regulates their development. Dev Biol 379:123–138. doi:10.1016/j.ydbio.2013.04.014

    CAS  PubMed  Google Scholar 

  8. Van den Heuvel DMA, Pasterkamp RJ (2008) Getting connected in the dopamine system. Prog Neurobiol 85:75–93. doi:10.1016/j.pneurobio.2008.01.003

    PubMed  Google Scholar 

  9. Hynes M, Rosenthal A (1999) Specification of dopaminergic and serotonergic neurons in the vertebrate CNS. Curr Opin Neurobiol 9:26–36

    CAS  PubMed  Google Scholar 

  10. Wassarman KM, Lewandoski M, Campbell K et al (1997) Specification of the anterior hindbrain and establishment of a normal mid/hindbrain organizer is dependent on Gbx2 gene function. Development 124:2923–2934

    CAS  PubMed  Google Scholar 

  11. Rhinn M, Brand M (2001) The midbrain–hindbrain boundary organizer. Curr Opin Neurobiol 11:34–42

    CAS  PubMed  Google Scholar 

  12. Acampora D, Gulisano M, Broccoli V, Simeone A (2001) Otx genes in brain morphogenesis. Prog Neurobiol 64:69–95

    CAS  PubMed  Google Scholar 

  13. Acampora D, Gulisano M, Simeone A (1999) Otx genes and the genetic control of brain morphogenesis. Mol Cell Neurosci 13:1–8. doi:10.1006/mcne.1998.0730

    CAS  PubMed  Google Scholar 

  14. Farkas LM, Dünker N, Roussa E et al (2003) Transforming growth factor-beta(s) are essential for the development of midbrain dopaminergic neurons in vitro and in vivo. J Neurosci 23:5178–5186

    CAS  PubMed  Google Scholar 

  15. Roussa E, Krieglstein K (2004) Induction and specification of midbrain dopaminergic cells: focus on SHH, FGF8, and TGF-beta. Cell Tissue Res 318:23–33. doi:10.1007/s00441-004-0916-4

    CAS  PubMed  Google Scholar 

  16. Cai J, Schleidt S, Pelta-Heller J et al (2013) BMP and TGF-β pathway mediators are critical upstream regulators of Wnt signaling during midbrain dopamine differentiation in human pluripotent stem cells. Dev Biol 376:62–73. doi:10.1016/j.ydbio.2013.01.012

    CAS  PubMed Central  PubMed  Google Scholar 

  17. Danielian PS, McMahon AP (1996) Engrailed-1 as a target of the Wnt-1 signalling pathway in vertebrate midbrain development. Nature 383:332–334. doi:10.1038/383332a0

    CAS  PubMed  Google Scholar 

  18. Castelo-Branco G, Wagner J, Rodriguez FJ et al (2003) Differential regulation of midbrain dopaminergic neuron development by Wnt-1, Wnt-3a, and Wnt-5a. Proc Natl Acad Sci USA 100:12747–12752. doi:10.1073/pnas.1534900100

    CAS  PubMed Central  PubMed  Google Scholar 

  19. Guo C, Qiu H-Y, Huang Y et al (2007) Lmx1b is essential for Fgf8 and Wnt1 expression in the isthmic organizer during tectum and cerebellum development in mice. Development 134:317–325. doi:10.1242/dev.02745

    CAS  PubMed  Google Scholar 

  20. Wurst W, Prakash N (2014) Wnt1-regulated genetic networks in midbrain dopaminergic neuron development. J Mol Cell Biol 6:34–41. doi:10.1093/jmcb/mjt046

    CAS  PubMed  Google Scholar 

  21. Anderegg A, Lin H-P, Chen J-A et al (2013) An Lmx1b-miR135a2 regulatory circuit modulates Wnt1/Wnt signaling and determines the size of the midbrain dopaminergic progenitor pool. PLoS Genet 9:e1003973. doi:10.1371/journal.pgen.1003973

    PubMed Central  PubMed  Google Scholar 

  22. Holder N, Hill J (1991) Retinoic acid modifies development of the midbrain-hindbrain border and affects cranial ganglion formation in zebrafish embryos. Development 113:1159–1170

    CAS  PubMed  Google Scholar 

  23. Avantaggiato V, Acampora D, Tuorto F, Simeone A (1996) Retinoic acid induces stage-specific repatterning of the rostral central nervous system. Dev Biol 175:347–357. doi:10.1006/dbio.1996.0120

    CAS  PubMed  Google Scholar 

  24. Kele J, Simplicio N, Ferri ALM et al (2006) Neurogenin 2 is required for the development of ventral midbrain dopaminergic neurons. Development 133:495–505. doi:10.1242/dev.02223

    CAS  PubMed  Google Scholar 

  25. Tomita K, Moriyoshi K, Nakanishi S et al (2000) Mammalian achaete-scute and atonal homologs regulate neuronal versus glial fate determination in the central nervous system. EMBO J 19:5460–5472. doi:10.1093/emboj/19.20.5460

    CAS  PubMed Central  PubMed  Google Scholar 

  26. Kim H-J, Sugimori M, Nakafuku M, Svendsen CN (2007) Control of neurogenesis and tyrosine hydroxylase expression in neural progenitor cells through bHLH proteins and Nurr1. Exp Neurol 203:394–405. doi:10.1016/j.expneurol.2006.08.029

    CAS  PubMed  Google Scholar 

  27. Puelles L, Rubenstein JLR (2003) Forebrain gene expression domains and the evolving prosomeric model. Trends Neurosci 26:469–476. doi:10.1016/S0166-2236(03)00234-0

    CAS  PubMed  Google Scholar 

  28. Rubenstein JL, Martinez S, Shimamura K, Puelles L (1994) The embryonic vertebrate forebrain: the prosomeric model. Science 266:578–580

    CAS  PubMed  Google Scholar 

  29. Puelles L, Harrison M, Paxinos G, Watson C (2013) A developmental ontology for the mammalian brain based on the prosomeric model. Trends Neurosci 36:570–578. doi:10.1016/j.tins.2013.06.004

    CAS  PubMed  Google Scholar 

  30. Smits SM, Von Oerthel L, Hoekstra EJ et al (2013) Molecular marker differences relate to developmental position and subsets of mesodiencephalic dopaminergic neurons. PLoS ONE 8:e76037. doi:10.1371/journal.pone.0076037

    CAS  PubMed Central  PubMed  Google Scholar 

  31. Doucet-Beaupré H, Lévesque M (2013) The role of developmental transcription factors in adult midbrain dopaminergic neurons. OA Neurosci 1(1):3

    Google Scholar 

  32. Smidt MP, Van Schaick HS, Lanctôt C et al (1997) A homeodomain gene Ptx3 has highly restricted brain expression in mesencephalic dopaminergic neurons. Proc Natl Acad Sci USA 94:13305–13310

    CAS  PubMed Central  PubMed  Google Scholar 

  33. Smidt MP, Smits SM, Bouwmeester H et al (2004) Early developmental failure of substantia nigra dopamine neurons in mice lacking the homeodomain gene Pitx3. Development 131:1145–1155. doi:10.1242/dev.01022

    CAS  PubMed  Google Scholar 

  34. Rieger DK, Reichenberger E, McLean W et al (2001) A double-deletion mutation in the Pitx3 gene causes arrested lens development in aphakia mice. Genomics 72:61–72. doi:10.1006/geno.2000.6464

    CAS  PubMed  Google Scholar 

  35. Semina EV, Murray JC, Reiter R et al (2000) Deletion in the promoter region and altered expression of Pitx3 homeobox gene in aphakia mice. Hum Mol Genet 9:1575–1585

    CAS  PubMed  Google Scholar 

  36. Hwang D-Y, Ardayfio P, Kang UJ et al (2003) Selective loss of dopaminergic neurons in the substantia nigra of Pitx3-deficient aphakia mice. Brain Res Mol Brain Res 114:123–131

    CAS  PubMed  Google Scholar 

  37. Nunes I, Tovmasian LT, Silva RM et al (2003) Pitx3 is required for development of substantia nigra dopaminergic neurons. Proc Natl Acad Sci USA 100:4245–4250. doi:10.1073/pnas.0230529100

    CAS  PubMed Central  PubMed  Google Scholar 

  38. Van den Munckhof P, Luk KC, Ste-Marie L et al (2003) Pitx3 is required for motor activity and for survival of a subset of midbrain dopaminergic neurons. Development 130:2535–2542

    PubMed  Google Scholar 

  39. Maxwell SL, Ho H-Y, Kuehner E et al (2005) Pitx3 regulates tyrosine hydroxylase expression in the substantia nigra and identifies a subgroup of mesencephalic dopaminergic progenitor neurons during mouse development. Dev Biol 282:467–479. doi:10.1016/j.ydbio.2005.03.028

    CAS  PubMed  Google Scholar 

  40. Jacobs FMJ, Smits SM, Noorlander CW et al (2007) Retinoic acid counteracts developmental defects in the substantia nigra caused by Pitx3 deficiency. Development 134:2673–2684. doi:10.1242/dev.02865

    CAS  PubMed  Google Scholar 

  41. Jacobs FMJ, Veenvliet JV, Almirza WH et al (2011) Retinoic acid-dependent and -independent gene-regulatory pathways of Pitx3 in meso-diencephalic dopaminergic neurons. Development 138:5213–5222. doi:10.1242/dev.071704

    CAS  PubMed  Google Scholar 

  42. McCaffery P, Dräger UC (1994) High levels of a retinoic acid-generating dehydrogenase in the meso-telencephalic dopamine system. PNAS 91:7772–7776

    CAS  PubMed Central  PubMed  Google Scholar 

  43. Peng C, Aron L, Klein R et al (2011) Pitx3 is a critical mediator of GDNF-induced BDNF expression in nigrostriatal dopaminergic neurons. J Neurosci 31:12802–12815. doi:10.1523/JNEUROSCI.0898-11.2011

    CAS  PubMed  Google Scholar 

  44. Kim J, Inoue K, Ishii J et al (2007) A MicroRNA feedback circuit in midbrain dopamine neurons. Science 317:1220–1224. doi:10.1126/science.1140481

    CAS  PubMed Central  PubMed  Google Scholar 

  45. Heyer MP, Pani AK, Smeyne RJ et al (2012) Normal midbrain dopaminergic neuron development and function in miR-133b mutant mice. J Neurosci 32:10887–10894. doi:10.1523/JNEUROSCI.1732-12.2012

    CAS  PubMed Central  PubMed  Google Scholar 

  46. Trajkovski M, Ahmed K, Esau CC, Stoffel M (2012) MyomiR-133 regulates brown fat differentiation through Prdm16. Nat Cell Biol 14:1330–1335. doi:10.1038/ncb2612

    CAS  PubMed  Google Scholar 

  47. Liu W, Bi P, Shan T et al (2013) miR-133a regulates adipocyte browning in vivo. PLoS Genet 9:e1003626. doi:10.1371/journal.pgen.1003626

    CAS  PubMed Central  PubMed  Google Scholar 

  48. Volpicelli F, De Gregorio R, Pulcrano S et al (2012) Direct regulation of Pitx3 expression by Nurr1 in culture and in developing mouse midbrain. PLoS ONE 7:e30661. doi:10.1371/journal.pone.0030661

    CAS  PubMed Central  PubMed  Google Scholar 

  49. Jacobs FMJ, Van der Linden AJA, Wang Y et al (2009) Identification of Dlk1, Ptpru and Klhl1 as novel Nurr1 target genes in meso-diencephalic dopamine neurons. Development 136:2363–2373. doi:10.1242/dev.037556

    CAS  PubMed Central  PubMed  Google Scholar 

  50. Jacobs FMJ, Van Erp S, Van der Linden AJA et al (2009) Pitx3 potentiates Nurr1 in dopamine neuron terminal differentiation through release of SMRT-mediated repression. Development 136:531–540. doi:10.1242/dev.029769

    CAS  PubMed  Google Scholar 

  51. Chakrabarty K, Von Oerthel L, Hellemons A et al (2012) Genome wide expression profiling of the mesodiencephalic region identifies novel factors involved in early and late dopaminergic development. Biology Open. doi:10.1242/bio.20121230

    PubMed Central  PubMed  Google Scholar 

  52. Martinat C, Bacci J-J, Leete T et al (2006) Cooperative transcription activation by Nurr1 and Pitx3 induces embryonic stem cell maturation to the midbrain dopamine neuron phenotype. Proc Natl Acad Sci USA 103:2874–2879. doi:10.1073/pnas.0511153103

    CAS  PubMed Central  PubMed  Google Scholar 

  53. Hwang D-Y, Hong S, Jeong J-W et al (2009) Vesicular monoamine transporter 2 and dopamine transporter are molecular targets of Pitx3 in the ventral midbrain dopamine neurons. J Neurochem 111:1202–1212. doi:10.1111/j.1471-4159.2009.06404.x

    CAS  PubMed  Google Scholar 

  54. Davis CA, Joyner AL (1988) Expression patterns of the homeo box-containing genes En-1 and En-2 and the proto-oncogene int-1 diverge during mouse development. Genes Dev 2:1736–1744

    CAS  PubMed  Google Scholar 

  55. Nakamura H, Katahira T, Matsunaga E, Sato T (2005) Isthmus organizer for midbrain and hindbrain development. Brain Res Brain Res Rev 49:120–126. doi:10.1016/j.brainresrev.2004.10.005

    PubMed  Google Scholar 

  56. Albéri L, Sgadò P, Simon HH (2004) Engrailed genes are cell-autonomously required to prevent apoptosis in mesencephalic dopaminergic neurons. Development 131:3229–3236. doi:10.1242/dev.01128

    PubMed  Google Scholar 

  57. Simon HH, Thuret S, Alberi L (2004) Midbrain dopaminergic neurons: control of their cell fate by the engrailed transcription factors. Cell Tissue Res 318:53–61. doi:10.1007/s00441-004-0973-8

    CAS  PubMed  Google Scholar 

  58. Lahti L, Peltopuro P, Piepponen TP, Partanen J (2012) Cell-autonomous FGF signaling regulates anteroposterior patterning and neuronal differentiation in the mesodiencephalic dopaminergic progenitor domain. Development 139:894–905. doi:10.1242/dev.071936

    CAS  PubMed  Google Scholar 

  59. Wurst W, Auerbach AB, Joyner AL (1994) Multiple developmental defects in Engrailed-1 mutant mice: an early mid-hindbrain deletion and patterning defects in forelimbs and sternum. Development 120:2065–2075

    CAS  PubMed  Google Scholar 

  60. Simon HH, Saueressig H, Wurst W et al (2001) Fate of midbrain dopaminergic neurons controlled by the engrailed genes. J Neurosci 21:3126–3134

    CAS  PubMed  Google Scholar 

  61. Sgadò P, Albéri L, Gherbassi D et al (2006) Slow progressive degeneration of nigral dopaminergic neurons in postnatal engrailed mutant mice. Proc Natl Acad Sci USA 103:15242–15247. doi:10.1073/pnas.0602116103

    PubMed Central  PubMed  Google Scholar 

  62. Sonnier L, Le Pen G, Hartmann A et al (2007) Progressive loss of dopaminergic neurons in the ventral midbrain of adult mice heterozygote for engrailed 1. J Neurosci 27:1063–1071. doi:10.1523/JNEUROSCI.4583-06.2007

    CAS  PubMed  Google Scholar 

  63. Bilovocky NA, Romito-DiGiacomo RR, Murcia CL et al (2003) Factors in the genetic background suppress the engrailed-1 cerebellar phenotype. J Neurosci 23:5105–5112

    CAS  PubMed  Google Scholar 

  64. Veenvliet JV, Dos Santos MTMA, Kouwenhoven WM et al (2013) Specification of dopaminergic subsets involves interplay of En1 and Pitx3. Development 140:3373–3384. doi:10.1242/dev.094565

    CAS  PubMed  Google Scholar 

  65. Bye CR, Thompson LH, Parish CL (2012) Birth dating of midbrain dopamine neurons identifies A9 enriched tissue for transplantation into Parkinsonian mice. Exp Neurol. doi:10.1016/j.expneurol.2012.04.002

    PubMed  Google Scholar 

  66. Chung CY, Seo H, Sonntag KC et al (2005) Cell type-specific gene expression of midbrain dopaminergic neurons reveals molecules involved in their vulnerability and protection. Hum Mol Genet 14:1709–1725. doi:10.1093/hmg/ddi178

    CAS  PubMed Central  PubMed  Google Scholar 

  67. Rotzinger S, Vaccarino FJ (2003) Cholecystokinin receptor subtypes: role in the modulation of anxiety-related and reward-related behaviours in animal models. J Psychiatry Neurosci 28:171–181

    PubMed Central  PubMed  Google Scholar 

  68. Fitzmaurice AG, Rhodes SL, Lulla A et al (2013) Aldehyde dehydrogenase inhibition as a pathogenic mechanism in Parkinson disease. Proc Natl Acad Sci USA 110:636–641. doi:10.1073/pnas.1220399110

    CAS  PubMed Central  PubMed  Google Scholar 

  69. Lane RF, Blaha CD, Phillips AG (1987) Cholecystokinin-induced inhibition of dopamine neurotransmission: comparison with chronic haloperidol treatment. Prog Neuropsychopharmacol Biol Psychiatry 11:291–299

    CAS  PubMed  Google Scholar 

  70. Boyce S, Rupniak NM, Tye S et al (1990) Modulatory role for CCK-B antagonists in Parkinson’s disease. Clin Neuropharmacol 13:339–347

    CAS  PubMed  Google Scholar 

  71. Simeone A, Puelles E, Omodei D et al (2011) Otx genes in neurogenesis of mesencephalic dopaminergic neurons. Dev Neurobiol 71:665–679. doi:10.1002/dneu.20877

    CAS  PubMed  Google Scholar 

  72. Omodei D, Acampora D, Mancuso P et al (2008) Anterior-posterior graded response to Otx2 controls proliferation and differentiation of dopaminergic progenitors in the ventral mesencephalon. Development 135:3459–3470. doi:10.1242/dev.027003

    CAS  PubMed  Google Scholar 

  73. Di Giovannantonio LG, Di Salvio M, Acampora D et al (2013) Otx2 selectively controls the neurogenesis of specific neuronal subtypes of the ventral tegmental area and compensates En1-dependent neuronal loss and MPTP vulnerability. Dev Biol 373:176–183. doi:10.1016/j.ydbio.2012.10.022

    PubMed  Google Scholar 

  74. Di Salvio M, Di Giovannantonio LG, Acampora D et al (2010) Otx2 controls neuron subtype identity in ventral tegmental area and antagonizes vulnerability to MPTP. Nat Neurosci 13:1481–1488. doi:10.1038/nn.2661

    PubMed  Google Scholar 

  75. Di Salvio M, Di Giovannantonio LG, Omodei D et al (2010) Otx2 expression is restricted to dopaminergic neurons of the ventral tegmental area in the adult brain. Int J Dev Biol 54:939–945. doi:10.1387/ijdb.092974ms

    PubMed  Google Scholar 

  76. Chung CY, Licznerski P, Alavian KN et al (2010) The transcription factor orthodenticle homeobox 2 influences axonal projections and vulnerability of midbrain dopaminergic neurons. Brain 133:2022–2031. doi:10.1093/brain/awq142

    PubMed Central  PubMed  Google Scholar 

  77. Tripathi PP, Di Giovannantonio LG, Sanguinetti E et al (2014) Increased dopaminergic innervation in the brain of conditional mutant mice overexpressing Otx2: effects on locomotor behavior and seizure susceptibility. Neuroscience 261:173–183. doi:10.1016/j.neuroscience.2013.12.045

    CAS  PubMed  Google Scholar 

  78. Kim RH, Smith PD, Aleyasin H et al (2005) Hypersensitivity of DJ-1-deficient mice to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyrindine (MPTP) and oxidative stress. Proc Natl Acad Sci USA 102:5215–5220. doi:10.1073/pnas.0501282102

    CAS  PubMed Central  PubMed  Google Scholar 

  79. Smith PD, Crocker SJ, Jackson-Lewis V et al (2003) Cyclin-dependent kinase 5 is a mediator of dopaminergic neuron loss in a mouse model of Parkinson’s disease. Proc Natl Acad Sci USA 100:13650–13655. doi:10.1073/pnas.2232515100

    CAS  PubMed Central  PubMed  Google Scholar 

  80. Wang S, Hu L-F, Yang Y et al (2005) Studies of ATP-sensitive potassium channels on 6-hydroxydopamine and haloperidol rat models of Parkinson’s disease: implications for treating Parkinson’s disease? Neuropharmacology 48:984–992. doi:10.1016/j.neuropharm.2005.01.009

    CAS  PubMed  Google Scholar 

  81. Pifl C, Giros B, Caron MG (1993) Dopamine transporter expression confers cytotoxicity to low doses of the parkinsonism-inducing neurotoxin 1-methyl-4-phenylpyridinium. J Neurosci 13:4246–4253

    CAS  PubMed  Google Scholar 

  82. Bezard E, Gross CE, Fournier MC et al (1999) Absence of MPTP-induced neuronal death in mice lacking the dopamine transporter. Exp Neurol 155:268–273. doi:10.1006/exnr.1998.6995

    CAS  PubMed  Google Scholar 

  83. Andersson E, Tryggvason U, Deng Q et al (2006) Identification of intrinsic determinants of midbrain dopamine neurons. Cell 124:393–405. doi:10.1016/j.cell.2005.10.037

    CAS  PubMed  Google Scholar 

  84. Chung S, Leung A, Han B-S et al (2009) Wnt1-lmx1a forms a novel autoregulatory loop and controls midbrain dopaminergic differentiation synergistically with the SHH-FoxA2 pathway. Cell Stem Cell 5:646–658. doi:10.1016/j.stem.2009.09.015

    CAS  PubMed Central  PubMed  Google Scholar 

  85. Yan CH, Levesque M, Claxton S et al (2011) Lmx1a and lmx1b function cooperatively to regulate proliferation, specification, and differentiation of midbrain dopaminergic progenitors. J Neurosci 31:12413–12425. doi:10.1523/JNEUROSCI.1077-11.2011

    CAS  PubMed  Google Scholar 

  86. Hoekstra EJ, Von Oerthel L, Van der Heide LP et al (2013) Lmx1a encodes a rostral set of mesodiencephalic dopaminergic neurons marked by the Wnt/B-catenin signaling activator R-spondin 2. PLoS ONE 8:e74049. doi:10.1371/journal.pone.0074049

    CAS  PubMed Central  PubMed  Google Scholar 

  87. Deng Q, Andersson E, Hedlund E et al (2011) Specific and integrated roles of Lmx1a, Lmx1b and Phox2a in ventral midbrain development. Development 138:3399–3408. doi:10.1242/dev.065482

    CAS  PubMed  Google Scholar 

  88. Ono Y, Nakatani T, Sakamoto Y et al (2007) Differences in neurogenic potential in floor plate cells along an anteroposterior location: midbrain dopaminergic neurons originate from mesencephalic floor plate cells. Development 134:3213–3225. doi:10.1242/dev.02879

    CAS  PubMed  Google Scholar 

  89. Smidt MP, Asbreuk CH, Cox JJ et al (2000) A second independent pathway for development of mesencephalic dopaminergic neurons requires Lmx1b. Nat Neurosci 3:337–341. doi:10.1038/73902

    CAS  PubMed  Google Scholar 

  90. Adams KA, Maida JM, Golden JA, Riddle RD (2000) The transcription factor Lmx1b maintains Wnt1 expression within the isthmic organizer. Development 127:1857–1867

    CAS  PubMed  Google Scholar 

  91. Smits SM, Ponnio T, Conneely OM et al (2003) Involvement of Nurr1 in specifying the neurotransmitter identity of ventral midbrain dopaminergic neurons. Eur J Neurosci 18:1731–1738

    PubMed  Google Scholar 

  92. Zetterström RH, Solomin L, Jansson L et al (1997) Dopamine neuron agenesis in Nurr1-deficient mice. Science 276:248–250

    PubMed  Google Scholar 

  93. Saucedo-Cardenas O, Quintana-Hau JD, Le WD et al (1998) Nurr1 is essential for the induction of the dopaminergic phenotype and the survival of ventral mesencephalic late dopaminergic precursor neurons. Proc Natl Acad Sci USA 95:4013–4018

    CAS  PubMed Central  PubMed  Google Scholar 

  94. Kadkhodaei B, Ito T, Joodmardi E et al (2009) Nurr1 is required for maintenance of maturing and adult midbrain dopamine neurons. J Neurosci 29:15923–15932. doi:10.1523/JNEUROSCI.3910-09.2009

    CAS  PubMed  Google Scholar 

  95. Kadkhodaei B, Alvarsson A, Schintu N et al (2013) Transcription factor Nurr1 maintains fiber integrity and nuclear-encoded mitochondrial gene expression in dopamine neurons. Proc Natl Acad Sci USA 110:2360–2365. doi:10.1073/pnas.1221077110

    CAS  PubMed Central  PubMed  Google Scholar 

  96. Van Heesbeen HJ, Mesman S, Veenvliet JV, Smidt MP (2013) Epigenetic mechanisms in the development and maintenance of dopaminergic neurons. Development 140:1159–1169. doi:10.1242/dev.089359

    PubMed  Google Scholar 

  97. Stott SRW, Metzakopian E, Lin W et al (2013) Foxa1 and foxa2 are required for the maintenance of dopaminergic properties in ventral midbrain neurons at late embryonic stages. J Neurosci 33:8022–8034. doi:10.1523/JNEUROSCI.4774-12.2013

    CAS  PubMed  Google Scholar 

  98. Metzakopian E, Lin W, Salmon-Divon M et al (2012) Genome-wide characterization of Foxa2 targets reveals upregulation of floor plate genes and repression of ventrolateral genes in midbrain dopaminergic progenitors. Development 139:2625–2634. doi:10.1242/dev.081034

    CAS  PubMed Central  PubMed  Google Scholar 

  99. Ferri ALM, Lin W, Mavromatakis YE et al (2007) Foxa1 and Foxa2 regulate multiple phases of midbrain dopaminergic neuron development in a dosage-dependent manner. Development 134:2761–2769. doi:10.1242/dev.000141

    CAS  PubMed  Google Scholar 

  100. Lin W, Metzakopian E, Mavromatakis YE et al (2009) Foxa1 and Foxa2 function both upstream of and cooperatively with Lmx1a and Lmx1b in a feedforward loop promoting mesodiencephalic dopaminergic neuron development. Dev Biol 333:386–396. doi:10.1016/j.ydbio.2009.07.006

    CAS  PubMed  Google Scholar 

  101. Kittappa R, Chang WW, Awatramani RB, McKay RDG (2007) The foxa2 gene controls the birth and spontaneous degeneration of dopamine neurons in old age. PLoS Biol 5:e325. doi:10.1371/journal.pbio.0050325

    PubMed Central  PubMed  Google Scholar 

  102. Hanks M, Wurst W, Anson-Cartwright L et al (1995) Rescue of the En-1 mutant phenotype by replacement of En-1 with En-2. Science 269:679–682

    CAS  PubMed  Google Scholar 

  103. Sgadò P, Viaggi C, Pinna A et al (2011) Behavioral, neurochemical, and electrophysiological changes in an early spontaneous mouse model of nigrostriatal degeneration. Neurotox Res 20:170–181. doi:10.1007/s12640-010-9232-9

    PubMed  Google Scholar 

  104. Andressoo J-O, Saarma M (2008) Signalling mechanisms underlying development and maintenance of dopamine neurons. Curr Opin Neurobiol 18:297–306. doi:10.1016/j.conb.2008.07.005

    CAS  PubMed  Google Scholar 

  105. Joksimovic M, Awatramani R (2014) Wnt/β-catenin signaling in midbrain dopaminergic neuron specification and neurogenesis. J Mol Cell Biol 6:27–33. doi:10.1093/jmcb/mjt043

    CAS  PubMed  Google Scholar 

  106. Kipp M, Karakaya S, Pawlak J et al (2006) Estrogen and the development and protection of nigrostriatal dopaminergic neurons: concerted action of a multitude of signals, protective molecules, and growth factors. Front Neuroendocrinol 27:376–390. doi:10.1016/j.yfrne.2006.07.001

    CAS  PubMed  Google Scholar 

  107. Aron L, Klein R (2011) Repairing the parkinsonian brain with neurotrophic factors. Trends Neurosci 34:88–100. doi:10.1016/j.tins.2010.11.001

    CAS  PubMed  Google Scholar 

  108. Howells DW, Porritt MJ, Wong JY et al (2000) Reduced BDNF mRNA expression in the Parkinson’s disease substantia nigra. Exp Neurol 166:127–135. doi:10.1006/exnr.2000.7483

    CAS  PubMed  Google Scholar 

  109. Peng C, Fan S, Li X et al (2007) Overexpression of pitx3 upregulates expression of BDNF and GDNF in SH-SY5Y cells and primary ventral mesencephalic cultures. FEBS Lett 581:1357–1361. doi:10.1016/j.febslet.2007.02.054

    CAS  PubMed  Google Scholar 

  110. Yang D, Peng C, Li X et al (2008) Pitx3-transfected astrocytes secrete brain-derived neurotrophic factor and glial cell line-derived neurotrophic factor and protect dopamine neurons in mesencephalon cultures. J Neurosci Res 86:3393–3400. doi:10.1002/jnr.21774

    CAS  PubMed  Google Scholar 

  111. Yu L, Saarma M, Arumäe U (2008) Death receptors and caspases but not mitochondria are activated in the GDNF- or BDNF-deprived dopaminergic neurons. J Neurosci 28:7467–7475. doi:10.1523/JNEUROSCI.1877-08.2008

    CAS  PubMed  Google Scholar 

  112. Clark J, Silvaggi JM, Kiselak T et al (2012) Pgc-1α overexpression downregulates Pitx3 and increases susceptibility to MPTP toxicity associated with decreased Bdnf. PLoS ONE 7:e48925. doi:10.1371/journal.pone.0048925

    CAS  PubMed Central  PubMed  Google Scholar 

  113. St-Pierre J, Drori S, Uldry M et al (2006) Suppression of reactive oxygen species and neurodegeneration by the PGC-1 transcriptional coactivators. Cell 127:397–408. doi:10.1016/j.cell.2006.09.024

    CAS  PubMed  Google Scholar 

  114. Zheng B, Liao Z, Locascio JJ et al (2010) PGC-1?, a potential therapeutic target for early intervention in Parkinson’s disease. Sci Transl Med 2:52ra73. doi:10.1126/scitranslmed.3001059

    PubMed Central  PubMed  Google Scholar 

  115. Kramer ER, Aron L, Ramakers GMJ et al (2007) Absence of Ret signaling in mice causes progressive and late degeneration of the nigrostriatal system. PLoS Biol 5:e39. doi:10.1371/journal.pbio.0050039

    PubMed Central  PubMed  Google Scholar 

  116. Pascual A, Hidalgo-Figueroa M, Piruat JI et al (2008) Absolute requirement of GDNF for adult catecholaminergic neuron survival. Nat Neurosci 11:755–761. doi:10.1038/nn.2136

    CAS  PubMed  Google Scholar 

  117. Blum M (1998) A null mutation in TGF-alpha leads to a reduction in midbrain dopaminergic neurons in the substantia nigra. Nat Neurosci 1:374–377. doi:10.1038/1584

    CAS  PubMed  Google Scholar 

  118. Moqrich A, Earley TJ, Watson J et al (2004) Expressing TrkC from the TrkA locus causes a subset of dorsal root ganglia neurons to switch fate. Nat Neurosci 7:812–818. doi:10.1038/nn1283

    CAS  PubMed Central  PubMed  Google Scholar 

  119. Bourane S, Garces A, Venteo S et al (2009) Low-threshold mechanoreceptor subtypes selectively express MafA and are specified by Ret signaling. Neuron 64:857–870. doi:10.1016/j.neuron.2009.12.004

    CAS  PubMed  Google Scholar 

  120. Partanen J (2007) FGF signalling pathways in development of the midbrain and anterior hindbrain. J Neurochem 101:1185–1193. doi:10.1111/j.1471-4159.2007.04463.x

    CAS  PubMed  Google Scholar 

  121. Shtutman M, Zhurinsky J, Simcha I et al (1999) The cyclin D1 gene is a target of the beta-catenin/LEF-1 pathway. Proc Natl Acad Sci USA 96:5522–5527

    CAS  PubMed Central  PubMed  Google Scholar 

  122. Ratzka A, Baron O, Stachowiak MK, Grothe C (2012) Fibroblast growth factor 2 regulates dopaminergic neuron development in vivo. J Neurochem 122:94–105. doi:10.1111/j.1471-4159.2012.07768.x

    CAS  PubMed  Google Scholar 

  123. Timmer M, Cesnulevicius K, Winkler C et al (2007) Fibroblast growth factor (FGF)-2 and FGF receptor 3 are required for the development of the substantia nigra, and FGF-2 plays a crucial role for the rescue of dopaminergic neurons after 6-hydroxydopamine lesion. J Neurosci 27:459–471. doi:10.1523/JNEUROSCI.4493-06.2007

    CAS  PubMed  Google Scholar 

  124. Baron O, Ratzka A, Grothe C (2012) Fibroblast growth factor 2 regulates adequate nigrostriatal pathway formation in mice. J Comp Neurol 520:3949–3961. doi:10.1002/cne.23138

    CAS  PubMed  Google Scholar 

  125. Blak AA, Naserke T, Saarimäki-Vire J et al (2007) Fgfr2 and Fgfr3 are not required for patterning and maintenance of the midbrain and anterior hindbrain. Developmental Biology 303:231–243. doi:10.1016/j.ydbio.2006.11.008

    CAS  PubMed  Google Scholar 

  126. Trokovic R, Trokovic N, Hernesniemi S et al (2003) FGFR1 is independently required in both developing mid- and hindbrain for sustained response to isthmic signals. EMBO J 22:1811–1823. doi:10.1093/emboj/cdg169

    CAS  PubMed Central  PubMed  Google Scholar 

  127. Jukkola T, Lahti L, Naserke T et al (2006) FGF regulated gene-expression and neuronal differentiation in the developing midbrain-hindbrain region. Dev Biol 297:141–157. doi:10.1016/j.ydbio.2006.05.002

    CAS  PubMed  Google Scholar 

  128. Saarimäki-Vire J, Peltopuro P, Lahti L et al (2007) Fibroblast growth factor receptors cooperate to regulate neural progenitor properties in the developing midbrain and hindbrain. J Neurosci 27:8581–8592. doi:10.1523/JNEUROSCI.0192-07.2007

    PubMed  Google Scholar 

  129. Klejbor I, Myers JM, Hausknecht K et al (2006) Fibroblast growth factor receptor signaling affects development and function of dopamine neurons-inhibition results in a schizophrenia-like syndrome in transgenic mice. J Neurochem 97:1243–1258. doi:10.1111/j.1471-4159.2006.03754.x

    CAS  PubMed  Google Scholar 

  130. Itoh N, Ohta H (2013) Roles of FGF20 in dopaminergic neurons and Parkinson’s disease. Front Mol Neurosci 6:15. doi:10.3389/fnmol.2013.00015

    CAS  PubMed Central  PubMed  Google Scholar 

  131. Murase S, McKay RD (2006) A specific survival response in dopamine neurons at most risk in Parkinson’s disease. J Neurosci 26:9750–9760. doi:10.1523/JNEUROSCI.2745-06.2006

    CAS  PubMed  Google Scholar 

  132. Wallén A, Zetterström RH, Solomin L et al (1999) Fate of mesencephalic AHD2-expressing dopamine progenitor cells in NURR1 mutant mice. Exp Cell Res 253:737–746. doi:10.1006/excr.1999.4691

    PubMed  Google Scholar 

  133. Chung S, Hedlund E, Hwang M et al (2005) The homeodomain transcription factor Pitx3 facilitates differentiation of mouse embryonic stem cells into AHD2-expressing dopaminergic neurons. Mol Cell Neurosci 28:241–252. doi:10.1016/j.mcn.2004.09.008

    CAS  PubMed  Google Scholar 

  134. De Urquiza AM, Liu S, Sjöberg M et al (2000) Docosahexaenoic acid, a ligand for the retinoid X receptor in mouse brain. Science 290:2140–2144

    PubMed  Google Scholar 

  135. Papanikolaou T, Amano T, Lennington J et al (2009) In-vitro analysis of Pitx3 in mesodiencephalic dopaminergic neuron maturation. Eur J Neurosci 29:2264–2275. doi:10.1111/j.1460-9568.2009.06784.x

    PubMed  Google Scholar 

  136. Castro DS, Hermanson E, Joseph B et al (2001) Induction of cell cycle arrest and morphological differentiation by Nurr1 and retinoids in dopamine MN9D cells. J Biol Chem 276:43277–43284. doi:10.1074/jbc.M107013200

    CAS  PubMed  Google Scholar 

  137. Chang Y-L, Chen S-J, Kao C-L et al (2012) Docosahexaenoic acid promotes dopaminergic differentiation in induced pluripotent stem cells and inhibits teratoma formation in rats with Parkinson-like pathology. Cell Transplant 21:313–332. doi:10.3727/096368911X580572

    PubMed  Google Scholar 

  138. Jeong H, Kim M-S, Kim S-W et al (2006) Regulation of tyrosine hydroxylase gene expression by retinoic acid receptor. J Neurochem 98:386–394. doi:10.1111/j.1471-4159.2006.03866.x

    CAS  PubMed  Google Scholar 

  139. Katsuki H, Kurimoto E, Takemori S et al (2009) Retinoic acid receptor stimulation protects midbrain dopaminergic neurons from inflammatory degeneration via BDNF-mediated signaling. J Neurochem 110:707–718. doi:10.1111/j.1471-4159.2009.06171.x

    CAS  PubMed  Google Scholar 

  140. Schilling TF, Nie Q, Lander AD (2012) Dynamics and precision in retinoic acid morphogen gradients. Curr Opin Genet Dev 22:562–569. doi:10.1016/j.gde.2012.11.012

    CAS  PubMed Central  PubMed  Google Scholar 

  141. Zhang L, Radtke K, Zheng L et al (2012) Noise drives sharpening of gene expression boundaries in the zebrafish hindbrain. Mol Syst Biol 8:613. doi:10.1038/msb.2012.45

    PubMed Central  PubMed  Google Scholar 

  142. Qin P, Haberbusch JM, Soprano KJ, Soprano DR (2004) Retinoic acid regulates the expression of PBX1, PBX2, and PBX3 in P19 cells both transcriptionally and post-translationally. J Cell Biochem 92:147–163. doi:10.1002/jcb.20057

    CAS  PubMed  Google Scholar 

  143. Vitobello A, Ferretti E, Lampe X et al (2011) Hox and Pbx factors control retinoic acid synthesis during hindbrain Segmentation. Dev Cell 20:469–482. doi:10.1016/j.devcel.2011.03.011

    CAS  PubMed Central  PubMed  Google Scholar 

  144. Kam RKT, Shi W, Chan SO et al (2013) Dhrs3 protein attenuates retinoic acid signaling and is required for early embryonic patterning. J Biol Chem 288:31477–31487. doi:10.1074/jbc.M113.514984

    PubMed Central  PubMed  Google Scholar 

  145. White RJ, Nie Q, Lander AD, Schilling TF (2007) Complex regulation of cyp26a1 creates a robust retinoic acid gradient in the zebrafish embryo. PLoS Biol 5:e304. doi:10.1371/journal.pbio.0050304

    PubMed Central  PubMed  Google Scholar 

  146. Topletz AR, Thatcher JE, Zelter A et al (2012) Comparison of the function and expression of CYP26A1 and CYP26B1, the two retinoic acid hydroxylases. Biochem Pharmacol 83:149–163. doi:10.1016/j.bcp.2011.10.007

    CAS  PubMed Central  PubMed  Google Scholar 

  147. Galter D, Buervenich S, Carmine A et al (2003) ALDH1 mRNA: presence in human dopamine neurons and decreases in substantia nigra in Parkinson’s disease and in the ventral tegmental area in schizophrenia. Neurobiol Dis 14:637–647. doi:10.1016/j.nbd.2003.09.001

    CAS  PubMed  Google Scholar 

  148. Bossers K, Meerhoff G, Balesar R et al (2009) Analysis of gene expression in Parkinson’s disease: possible involvement of neurotrophic support and axon guidance in dopaminergic cell death. Brain Pathol 19:91–107. doi:10.1111/j.1750-3639.2008.00171.x

    CAS  PubMed  Google Scholar 

  149. Moran LB, Duke DC, Deprez M et al (2006) Whole genome expression profiling of the medial and lateral substantia nigra in Parkinson’s disease. Neurogenetics 7:1–11. doi:10.1007/s10048-005-0020-2

    CAS  PubMed  Google Scholar 

  150. Kurauchi Y, Hisatsune A, Isohama Y et al (2011) Midbrain dopaminergic neurons utilize nitric oxide/cyclic GMP signaling to recruit ERK that links retinoic acid receptor stimulation to up-regulation of BDNF. J Neurochem 116:323–333. doi:10.1111/j.1471-4159.2010.06916.x

    CAS  PubMed  Google Scholar 

  151. Moon YS, Smas CM, Lee K et al (2002) Mice lacking paternally expressed Pref-1/Dlk1 display growth retardation and accelerated adiposity. Mol Cell Biol 22:5585–5592

    CAS  PubMed Central  PubMed  Google Scholar 

  152. Abdallah BM, Jensen CH, Gutierrez G et al (2004) Regulation of human skeletal stem cells differentiation by Dlk1/Pref-1. J Bone Miner Res 19:841–852. doi:10.1359/JBMR.040118

    CAS  PubMed  Google Scholar 

  153. Enomoto H, Furuichi T, Zanma A et al (2004) Runx2 deficiency in chondrocytes causes adipogenic changes in vitro. J Cell Sci 117:417–425. doi:10.1242/jcs.00866

    CAS  PubMed  Google Scholar 

  154. Hansen LH, Madsen B, Teisner B et al (1998) Characterization of the inhibitory effect of growth hormone on primary preadipocyte differentiation. Mol Endocrinol 12:1140–1149

    CAS  PubMed  Google Scholar 

  155. Smas CM, Chen L, Zhao L et al (1999) Transcriptional repression of pref-1 by glucocorticoids promotes 3T3-L1 adipocyte differentiation. J Biol Chem 274:12632–12641

    CAS  PubMed  Google Scholar 

  156. Christophersen NS, Grønborg M, Petersen TN et al (2007) Midbrain expression of Delta-like 1 homologue is regulated by GDNF and is associated with dopaminergic differentiation. Exp Neurol 204:791–801. doi:10.1016/j.expneurol.2007.01.014

    CAS  PubMed  Google Scholar 

  157. Jensen CH, Meyer M, Schroder HD et al (2001) Neurons in the monoaminergic nuclei of the rat and human central nervous system express FA1/dlk. NeuroReport 12:3959–3963

    CAS  PubMed  Google Scholar 

  158. Bauer M, Szulc J, Meyer M et al (2008) Delta-like 1 participates in the specification of ventral midbrain progenitor derived dopaminergic neurons. J Neurochem 104:1101–1115. doi:10.1111/j.1471-4159.2007.05037.x

    CAS  PubMed  Google Scholar 

  159. Kim Y (2010) Effect of retinoic acid and delta-like 1 homologue (DLK1) on differentiation in neuroblastoma. Nutr Res Pract 4:276–282. doi:10.4162/nrp.2010.4.4.276

    CAS  PubMed Central  PubMed  Google Scholar 

  160. Armengol J, Villena JA, Hondares E et al (2012) Pref-1 in brown adipose tissue: specific involvement in brown adipocyte differentiation and regulatory role of C/EBPδ. Biochem J. doi:10.1042/BJ20111714

    PubMed  Google Scholar 

  161. Hudak CS, Sul HS (2013) Pref-1, a gatekeeper of adipogenesis. Front Endocrinol (Lausanne) 4:79. doi:10.3389/fendo.2013.00079

    Google Scholar 

  162. Müller D, Cherukuri P, Henningfeld K et al (2014) Dlk1 promotes a fast motor neuron biophysical signature required for peak force execution. Science 343:1264–1266. doi:10.1126/science.1246448

    PubMed  Google Scholar 

  163. Raghunandan R, Ruiz-Hidalgo M, Jia Y et al (2008) Dlk1 influences differentiation and function of B lymphocytes. Stem Cells Dev 17:495–507. doi:10.1089/scd.2007.0102

    CAS  PubMed Central  PubMed  Google Scholar 

  164. Wheeler SR, Stagg SB, Crews ST (2008) Multiple Notch signaling events control drosophila CNS midline neurogenesis, gliogenesis and neuronal identity. Development 135:3071–3079. doi:10.1242/dev.022343

    CAS  PubMed Central  PubMed  Google Scholar 

  165. Tio M, Toh J, Fang W et al (2011) Asymmetric cell division and notch signaling specify dopaminergic neurons in drosophila. PLoS ONE 6:e26879. doi:10.1371/journal.pone.0026879

    CAS  PubMed Central  PubMed  Google Scholar 

  166. Falix FA, Aronson DC, Lamers WH, Gaemers IC (2012) Possible roles of DLK1 in the Notch pathway during development and disease. Biochim Biophys Acta. doi:10.1016/j.bbadis.2012.02.003

    PubMed  Google Scholar 

  167. Haubenberger D, Reinthaler E, Mueller JC et al (2011) Association of transcription factor polymorphisms PITX3 and EN1 with Parkinson’s disease. Neurobiol Aging 32:302–307. doi:10.1016/j.neurobiolaging.2009.02.015

    CAS  PubMed  Google Scholar 

  168. Bergman O, Håkansson A, Westberg L et al (2010) PITX3 polymorphism is associated with early onset Parkinson’s disease. Neurobiol Aging 31:114–117. doi:10.1016/j.neurobiolaging.2008.03.008

    CAS  PubMed  Google Scholar 

  169. Fuchs J, Mueller JC, Lichtner P et al (2009) The transcription factor PITX3 is associated with sporadic Parkinson’s disease. Neurobiol Aging 30:731–738. doi:10.1016/j.neurobiolaging.2007.08.014

    CAS  PubMed  Google Scholar 

  170. Zheng K, Heydari B, Simon DK (2003) A common NURR1 polymorphism associated with Parkinson disease and diffuse Lewy body disease. Arch Neurol 60:722–725. doi:10.1001/archneur.60.5.722

    PubMed  Google Scholar 

  171. Bergman O, Håkansson A, Westberg L et al (2009) Do polymorphisms in transcription factors LMX1A and LMX1B influence the risk for Parkinson’s disease? J Neural Transm 116:333–338. doi:10.1007/s00702-009-0187-z

    CAS  PubMed  Google Scholar 

  172. Grünblatt E, Zehetmayer S, Jacob CP et al (2010) Pilot study: peripheral biomarkers for diagnosing sporadic Parkinson’s disease. J Neural Transm 117:1387–1393. doi:10.1007/s00702-010-0509-1

    PubMed  Google Scholar 

  173. Karamohamed S, Latourelle JC, Racette BA et al (2005) BDNF genetic variants are associated with onset age of familial Parkinson disease: GenePD Study. Neurology 65:1823–1825. doi:10.1212/01.wnl.0000187075.81589.fd

    CAS  PubMed  Google Scholar 

  174. Pihlstrøm L, Axelsson G, Bjørnarå KA et al (2013) Supportive evidence for 11 loci from genome-wide association studies in Parkinson’s disease. Neurobiol Aging 34(1708):e7–e13. doi:10.1016/j.neurobiolaging.2012.10.019

    PubMed  Google Scholar 

  175. Goris A, Williams-Gray CH, Foltynie T et al (2007) Investigation of TGFB2 as a candidate gene in multiple sclerosis and Parkinson’s disease. J Neurol 254:846–848. doi:10.1007/s00415-006-0414-6

    CAS  PubMed  Google Scholar 

  176. Sulzer D (2007) Multiple hit hypotheses for dopamine neuron loss in Parkinson’s disease. Trends Neurosci 30:244–250. doi:10.1016/j.tins.2007.03.009

    CAS  PubMed  Google Scholar 

  177. Alvarez-Fischer D, Fuchs J, Castagner F et al (2011) Engrailed protects mouse midbrain dopaminergic neurons against mitochondrial complex I insults. Nat Neurosci 14:1260–1266. doi:10.1038/nn.2916

    CAS  PubMed  Google Scholar 

  178. L’honoré A, Commère P-H, Ouimette J-F et al (2014) Redox regulation by pitx2 and pitx3 is critical for fetal myogenesis. Dev Cell 29:392–405. doi:10.1016/j.devcel.2014.04.006

    PubMed  Google Scholar 

  179. Spatazza J, Di Lullo E, Joliot A et al (2013) Homeoprotein signaling in development, health, and disease: a shaking of dogmas offers challenges and promises from bench to bed. Pharmacol Rev 65:90–104. doi:10.1124/pr.112.006577

    CAS  PubMed  Google Scholar 

  180. Chan CS, Guzman JN, Ilijic E et al (2007) “Rejuvenation” protects neurons in mouse models of Parkinson’s disease. Nature 447:1081–1086. doi:10.1038/nature05865

    CAS  PubMed  Google Scholar 

  181. Khaliq ZM, Bean BP (2010) Pacemaking in dopaminergic ventral tegmental area neurons: depolarizing drive from background and voltage-dependent sodium conductances. J Neurosci 30:7401–7413. doi:10.1523/JNEUROSCI.0143-10.2010

    CAS  PubMed Central  PubMed  Google Scholar 

  182. Chan CS, Gertler TS, Surmeier DJ (2009) Calcium homeostasis, selective vulnerability and Parkinson’s disease. Trends Neurosci 32:249–256. doi:10.1016/j.tins.2009.01.006

    CAS  PubMed  Google Scholar 

  183. Mosharov EV, Larsen KE, Kanter E et al (2009) Interplay between cytosolic dopamine, calcium, and alpha-synuclein causes selective death of substantia nigra neurons. Neuron 62:218–229. doi:10.1016/j.neuron.2009.01.033

    CAS  PubMed Central  PubMed  Google Scholar 

  184. Yamada T, McGeer PL, Baimbridge KG, McGeer EG (1990) Relative sparing in Parkinson’s disease of substantia nigra dopamine neurons containing calbindin-D28 K. Brain Res 526:303–307

    CAS  PubMed  Google Scholar 

  185. Liss B, Haeckel O, Wildmann J et al (2005) K-ATP channels promote the differential degeneration of dopaminergic midbrain neurons. Nat Neurosci 8:1742–1751. doi:10.1038/nn1570

    CAS  PubMed  Google Scholar 

  186. Arenas E (2010) Towards stem cell replacement therapies for Parkinson’s disease. Biochem Biophys Res Commun 396:152–156. doi:10.1016/j.bbrc.2010.04.037

    CAS  PubMed  Google Scholar 

  187. Gaillard A, Jaber M (2011) Rewiring the brain with cell transplantation in Parkinson’s disease. Trends Neurosci 34:124–133. doi:10.1016/j.tins.2011.01.003

    CAS  PubMed  Google Scholar 

  188. Toulouse A, Sullivan AM (2008) Progress in Parkinson’s disease-where do we stand? Prog Neurobiol 85:376–392. doi:10.1016/j.pneurobio.2008.05.003

    PubMed  Google Scholar 

  189. Kriks S, Shim J-W, Piao J et al (2011) Dopamine neurons derived from human ES cells efficiently engraft in animal models of Parkinson’s disease. Nature 480:547–551. doi:10.1038/nature10648

    CAS  PubMed Central  PubMed  Google Scholar 

  190. Ganat YM, Calder EL, Kriks S et al (2012) Identification of embryonic stem cell-derived midbrain dopaminergic neurons for engraftment. J Clin Invest 122:2928–2939. doi:10.1172/JCI58767

    CAS  PubMed Central  PubMed  Google Scholar 

  191. Caiazzo M, Dell’Anno MT, Dvoretskova E et al (2011) Direct generation of functional dopaminergic neurons from mouse and human fibroblasts. Nature 476:224–227. doi:10.1038/nature10284

    CAS  PubMed  Google Scholar 

  192. Wernig M, Zhao J-P, Pruszak J et al (2008) Neurons derived from reprogrammed fibroblasts functionally integrate into the fetal brain and improve symptoms of rats with Parkinson’s disease. Proc Natl Acad Sci USA 105:5856–5861. doi:10.1073/pnas.0801677105

    CAS  PubMed Central  PubMed  Google Scholar 

  193. Hedlund E, Pruszak J, Lardaro T et al (2008) Embryonic stem cell-derived Pitx3-enhanced green fluorescent protein midbrain dopamine neurons survive enrichment by fluorescence-activated cell sorting and function in an animal model of Parkinson’s disease. Stem Cells 26:1526–1536. doi:10.1634/stemcells.2007-0996

    CAS  PubMed Central  PubMed  Google Scholar 

  194. Salti A, Nat R, Neto S et al (2013) Expression of early developmental markers predicts the efficiency of embryonic stem cell differentiation into midbrain dopaminergic neurons. Stem Cells Dev 22:397–411. doi:10.1089/scd.2012.0238

    CAS  PubMed Central  PubMed  Google Scholar 

  195. Hwang D-Y, Kim D-S, Kim D-W (2010) Human ES and iPS cells as cell sources for the treatment of Parkinson’s disease: current state and problems. J Cell Biochem 109:292–301. doi:10.1002/jcb.22411

    CAS  PubMed  Google Scholar 

  196. Roessler R, Smallwood S, Veenvliet J et al (2014) Detailed analysis of the genetic and epigenetic signature of iPS cell-derived mesodiencephalic dopaminergic neurons. Stem Cell Rep 2(4):520–533. doi:10.1016/j.stemcr.2014.03.001

  197. Bar-Nur O, Russ HA, Efrat S, Benvenisty N (2011) Epigenetic memory and preferential lineage-specific differentiation in induced pluripotent stem cells derived from human pancreatic islet beta cells. Cell Stem Cell 9:17–23. doi:10.1016/j.stem.2011.06.007

    CAS  PubMed  Google Scholar 

  198. Kim K, Doi A, Wen B et al (2010) Epigenetic memory in induced pluripotent stem cells. Nature 467:285–290. doi:10.1038/nature09342

    CAS  PubMed Central  PubMed  Google Scholar 

  199. Momčilović O, Liu Q, Swistowski A et al (2013) Genome wide profiling of dopaminergic neurons derived from human embryonic and induced pluripotent Stem cells. Stem Cells Dev. doi:10.1089/scd.2013.0412

    PubMed  Google Scholar 

  200. Cooper O, Parmar M, Isacson O (2012) Chapter 13, characterization and criteria of embryonic stem and induced pluripotent stem cells for a dopamine replacement therapy. In: Stephen BD, Anders B (eds) Progress in brain research. Elsevier, London, pp 265–276

    Google Scholar 

  201. Grealish S, Jönsson ME, Li M et al (2010) The A9 dopamine neuron component in grafts of ventral mesencephalon is an important determinant for recovery of motor function in a rat model of Parkinson’s disease. Brain 133:482–495. doi:10.1093/brain/awp328

    PubMed Central  PubMed  Google Scholar 

  202. Thompson L, Barraud P, Andersson E et al (2005) Identification of dopaminergic neurons of nigral and ventral tegmental area subtypes in grafts of fetal ventral mesencephalon based on cell morphology, protein expression, and efferent projections. J Neurosci 25:6467–6477. doi:10.1523/JNEUROSCI.1676-05.2005

    CAS  PubMed  Google Scholar 

  203. Allodi I, Hedlund E (2014) Directed midbrain and spinal cord neurogenesis from pluripotent stem cells to model development and disease in a dish. Front Neurosci 8:109. doi:10.3389/fnins.2014.00109

    PubMed Central  PubMed  Google Scholar 

  204. Roeper J (2013) Dissecting the diversity of midbrain dopamine neurons. Trends Neurosci 36:336–342. doi:10.1016/j.tins.2013.03.003

    CAS  PubMed  Google Scholar 

  205. Liss B, Roeper J (2008) Individual dopamine midbrain neurons: functional diversity and flexibility in health and disease. Brain Res Rev 58:314–321. doi:10.1016/j.brainresrev.2007.10.004

    CAS  PubMed  Google Scholar 

  206. Kirkeby A, Grealish S, Wolf DA et al (2012) Generation of regionally specified neural progenitors and functional neurons from human embryonic stem cells under defined conditions. Cell Rep 1:703–714. doi:10.1016/j.celrep.2012.04.009

    CAS  PubMed  Google Scholar 

  207. Sánchez-Danés A, Consiglio A, Richaud Y et al (2012) Efficient generation of A9 midbrain dopaminergic neurons by lentiviral delivery of LMX1A in human embryonic stem cells and induced pluripotent stem cells. Hum Gene Ther 23:56–69. doi:10.1089/hum.2011.054

    PubMed Central  PubMed  Google Scholar 

  208. Tian L-P, Zhang S, Zhang Y-J et al (2012) Lmx1b can promote the differentiation of embryonic stem cells to dopaminergic neurons associated with Parkinson’s disease. Biotechnol Lett 34:1167–1174. doi:10.1007/s10529-012-0888-5

    CAS  PubMed  Google Scholar 

  209. Roy NS, Cleren C, Singh SK et al (2006) Functional engraftment of human ES cell-derived dopaminergic neurons enriched by coculture with telomerase-immortalized midbrain astrocytes. Nat Med 12:1259–1268. doi:10.1038/nm1495

    CAS  PubMed  Google Scholar 

  210. Narytnyk A, Verdon B, Loughney A et al (2014) Differentiation of human epidermal neural crest stem cells (hEPI-NCSC) into virtually homogenous populations of dopaminergic neurons. Stem Cell Rev. doi:10.1007/s12015-013-9493-9

    Google Scholar 

  211. Mendez I, Sanchez-Pernaute R, Cooper O et al (2005) Cell type analysis of functional fetal dopamine cell suspension transplants in the striatum and substantia nigra of patients with Parkinson’s disease. Brain 128:1498–1510. doi:10.1093/brain/awh510

    PubMed Central  PubMed  Google Scholar 

  212. Fu Y, Yuan Y, Halliday G et al (2012) A cytoarchitectonic and chemoarchitectonic analysis of the dopamine cell groups in the substantia nigra, ventral tegmental area, and retrorubral field in the mouse. Brain Struct Funct 217:591–612. doi:10.1007/s00429-011-0349-2

    PubMed  Google Scholar 

  213. Reyes S, Fu Y, Double K et al (2012) GIRK2 expression in dopamine neurons of the substantia nigra and ventral tegmental area. J Comp Neurol 520:2591–2607. doi:10.1002/cne.23051

    CAS  PubMed  Google Scholar 

  214. Greene JG, Dingledine R, Greenamyre JT (2005) Gene expression profiling of rat midbrain dopamine neurons: implications for selective vulnerability in Parkinsonism. Neurobiol Dis 18:19–31. doi:10.1016/j.nbd.2004.10.003

    CAS  PubMed  Google Scholar 

  215. Grimm J, Mueller A, Hefti F, Rosenthal A (2004) Molecular basis for catecholaminergic neuron diversity. PNAS 101:13891–13896. doi:10.1073/pnas.0405340101

    CAS  PubMed Central  PubMed  Google Scholar 

  216. D’Amato RJ, Lipman ZP, Snyder SH (1986) Selectivity of the parkinsonian neurotoxin MPTP: toxic metabolite MPP+ binds to neuromelanin. Science 231:987–989

    PubMed  Google Scholar 

  217. D’Amato RJ, Alexander GM, Schwartzman RJ et al (1987) Evidence for neuromelanin involvement in MPTP-induced neurotoxicity. Nature 327:324–326. doi:10.1038/327324a0

    PubMed  Google Scholar 

  218. Fishell G, Heintz N (2013) The neuron identity problem: form meets function. Neuron 80:602–612. doi:10.1016/j.neuron.2013.10.035

    CAS  PubMed  Google Scholar 

  219. Stamatakis AM, Jennings JH, Ung RL et al (2013) A unique population of ventral tegmental area neurons inhibits the lateral habenula to promote reward. Neuron 80:1039–1053. doi:10.1016/j.neuron.2013.08.023

    CAS  PubMed  Google Scholar 

  220. Lammel S, Hetzel A, Häckel O et al (2008) Unique properties of mesoprefrontal neurons within a dual mesocorticolimbic dopamine system. Neuron 57:760–773. doi:10.1016/j.neuron.2008

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a VICI-ALW grant [865.09.002 to M.P.S.] from the Dutch Organisation for Scientific Research (NWO).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marten P. Smidt.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Veenvliet, J.V., Smidt, M.P. Molecular mechanisms of dopaminergic subset specification: fundamental aspects and clinical perspectives. Cell. Mol. Life Sci. 71, 4703–4727 (2014). https://doi.org/10.1007/s00018-014-1681-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-014-1681-5

Keywords

Navigation