Skip to main content

Advertisement

Log in

Efficient genome engineering in eukaryotes using Cas9 from Streptococcus thermophilus

  • Research Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

The Streptococcus thermophilus CRISPR3-Cas (StCas9) system has been shown to mediate DNA cleavage in its original host and in E. coli as well as in vitro. Here, we have reconstituted the StCas9 system in yeast and conducted a systematic optimization of the sgRNA structure, including the minimal length of tracrRNA, loop structure, Match II region, Bulge motif, the minimal length of guide sequence within the crRNA, tolerance of mismatches and target sequence preference. The optimal sgRNA design for the StCas9 system achieved up to 12 and 40 % targeting efficiencies in yeast and human cells, respectively. This study provides important insight into the sequence and structural requirements necessary to develop a targeted and highly efficient eukaryotic gene editing platform using CRISPR-Cas systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Wiedenheft B, Sternberg SH, Doudna JA (2012) RNA-guided genetic silencing systems in bacteria and archaea. Nature 482(7385):331–338. doi:10.1038/nature10886

    Article  CAS  PubMed  Google Scholar 

  2. Bhaya D, Davison M, Barrangou R (2011) CRISPR-Cas systems in bacteria and archaea: versatile small RNAs for adaptive defense and regulation. Annu Rev Genet 45:273–297. doi:10.1146/annurev-genet-110410-132430

    Article  CAS  PubMed  Google Scholar 

  3. Horvath P, Barrangou R (2010) CRISPR/Cas, the immune system of bacteria and archaea. Science 327(5962):167–170. doi:10.1126/science.1179555

    Article  CAS  PubMed  Google Scholar 

  4. Makarova KS, Haft DH, Barrangou R, Brouns SJ, Charpentier E, Horvath P, Moineau S, Mojica FJ, Wolf YI, Yakunin AF, van der Oost J, Koonin EV (2011) Evolution and classification of the CRISPR-Cas systems. Nat Rev Microbiol 9(6):467–477. doi:10.1038/nrmicro2577

    Article  CAS  PubMed  Google Scholar 

  5. Deltcheva E, Chylinski K, Sharma CM, Gonzales K, Chao Y, Pirzada ZA, Eckert MR, Vogel J, Charpentier E (2011) CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature 471(7340):602–607. doi:10.1038/nature09886

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Fonfara I, Le Rhun A, Chylinski K, Makarova KS, Lecrivain AL, Bzdrenga J, Koonin EV, Charpentier E (2014) Phylogeny of Cas9 determines functional exchangeability of dual-RNA and Cas9 among orthologous type II CRISPR-Cas systems. Nucleic Acids Res 42(4):2577–2590. doi:10.1093/nar/gkt1074

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Chylinski K, Le Rhun A, Charpentier E (2013) The tracrRNA and Cas9 families of type II CRISPR-Cas immunity systems. RNA Biol 10(5):726–737. doi:10.4161/rna.24321

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337(6096):816–821. doi:10.1126/science.1225829

    Article  CAS  PubMed  Google Scholar 

  9. Mali P, Yang L, Esvelt KM, Aach J, Guell M, DiCarlo JE, Norville JE, Church GM (2013) RNA-guided human genome engineering via Cas9. Science 339(6121):823–826. doi:10.1126/science.1232033

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA, Zhang F (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339(6121):819–823. doi:10.1126/science.1231143

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Hsu PD, Scott DA, Weinstein JA, Ran FA, Konermann S, Agarwala V, Li Y, Fine EJ, Wu X, Shalem O, Cradick TJ, Marraffini LA, Bao G, Zhang F (2013) DNA targeting specificity of RNA-guided Cas9 nucleases. Nat Biotechnol 31(9):827–832. doi:10.1038/nbt.2647

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Fu Y, Foden JA, Khayter C, Maeder ML, Reyon D, Joung JK, Sander JD (2013) High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat Biotechnol 31(9):822–826. doi:10.1038/nbt.2623

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Pattanayak V, Lin S, Guilinger JP, Ma E, Doudna JA, Liu DR (2013) High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity. Nat Biotechnol 31(9):839–843. doi:10.1038/nbt.2673

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Mali P, Aach J, Stranges PB, Esvelt KM, Moosburner M, Kosuri S, Yang L, Church GM (2013) CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering. Nat Biotechnol 31(9):833–838. doi:10.1038/nbt.2675

    Article  CAS  PubMed  Google Scholar 

  15. Farzadfard F, Perli SD, Lu TK (2013) Tunable and multifunctional eukaryotic transcription factors based on CRISPR/Cas. ACS Synth Biol. doi:10.1021/sb400081r

    PubMed Central  PubMed  Google Scholar 

  16. Maeder ML, Linder SJ, Cascio VM, Fu Y, Ho QH, Joung JK (2013) CRISPR RNA-guided activation of endogenous human genes. Nat Methods 10(10):977–979. doi:10.1038/nmeth.2598

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Perez-Pinera P, Kocak DD, Vockley CM, Adler AF, Kabadi AM, Polstein LR, Thakore PI, Glass KA, Ousterout DG, Leong KW, Guilak F, Crawford GE, Reddy TE, Gersbach CA (2013) RNA-guided gene activation by CRISPR-Cas9-based transcription factors. Nat Methods 10(10):973–976. doi:10.1038/nmeth.2600

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Zhang Y, Heidrich N, Ampattu BJ, Gunderson CW, Seifert HS, Schoen C, Vogel J, Sontheimer EJ (2013) Processing-independent CRISPR RNAs limit natural transformation in Neisseria meningitidis. Mol Cell 50(4):488–503. doi:10.1016/j.molcel.2013.05.001

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Hou Z, Zhang Y, Propson NE, Howden SE, Chu LF, Sontheimer EJ, Thomson JA (2013) Efficient genome engineering in human pluripotent stem cells using Cas9 from Neisseria meningitidis. Proc Natl Acad Sci USA 110(39):15644–15649. doi:10.1073/pnas.1313587110

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Horvath P, Romero DA, Coute-Monvoisin AC, Richards M, Deveau H, Moineau S, Boyaval P, Fremaux C, Barrangou R (2008) Diversity, activity, and evolution of CRISPR loci in Streptococcus thermophilus. J Bacteriol 190(4):1401–1412. doi:10.1128/JB.01415-07

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Magadan AH, Dupuis ME, Villion M, Moineau S (2012) Cleavage of phage DNA by the Streptococcus thermophilus CRISPR3-Cas system. PLoS One 7(7):e40913. doi:10.1371/journal.pone.0040913

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Karvelis T, Gasiunas G, Miksys A, Barrangou R, Horvath P, Siksnys V (2013) crRNA and tracrRNA guide Cas9-mediated DNA interference in Streptococcus thermophilus. RNA Biol 10(5):841–851. doi:10.4161/rna.24203

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Sapranauskas R, Gasiunas G, Fremaux C, Barrangou R, Horvath P, Siksnys V (2011) The Streptococcus thermophilus CRISPR/Cas system provides immunity in Escherichia coli. Nucleic Acids Res 39(21):9275–9282. doi:10.1093/nar/gkr606

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Gasiunas G, Barrangou R, Horvath P, Siksnys V (2012) Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc Natl Acad Sci USA 109(39):E2579–E2586. doi:10.1073/pnas.1208507109

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Kato Y, Sano M, Taira K (2003) Analysis of processing-defective variants of human tRNA(Val). Nucleic Acids Res Suppl 3:283–284

    Article  CAS  PubMed  Google Scholar 

  26. Good PD, Engelke DR (1994) Yeast expression vectors using rna-polymerase-Iii promoters. Gene 151(1–2):209–214. doi:10.1016/0378-1119(94)90658-0

    Article  CAS  PubMed  Google Scholar 

  27. Cho SW, Kim S, Kim JM, Kim JS (2013) Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease. Nat Biotechnol 31(3):230–232. doi:10.1038/nbt.2507

    Article  CAS  PubMed  Google Scholar 

  28. Esvelt KM, Mali P, Braff JL, Moosburner M, Yaung SJ, Church GM (2013) Orthogonal Cas9 proteins for RNA-guided gene regulation and editing. Nat Methods 10(11):1116–1121. doi:10.1038/nmeth.2681

    Article  CAS  PubMed  Google Scholar 

  29. Jinek M, East A, Cheng A, Lin S, Ma E, Doudna J (2013) RNA-programmed genome editing in human cells. ELife 2:e00471. doi:10.7554/eLife.00471

    Article  PubMed Central  PubMed  Google Scholar 

  30. Jinek M, Jiang F, Taylor DW, Sternberg SH, Kaya E, Ma E, Anders C, Hauer M, Zhou K, Lin S, Kaplan M, Iavarone AT, Charpentier E, Nogales E, Doudna JA (2014) Structures of Cas9 endonucleases reveal RNA-mediated conformational activation. Science 343(6176):1247997. doi:10.1126/science.1247997

    Article  PubMed Central  PubMed  Google Scholar 

  31. Nishimasu H, Ran FA, Hsu PD, Konermann S, Shehata SI, Dohmae N, Ishitani R, Zhang F, Nureki O (2014) Crystal structure of Cas9 in complex with guide RNA and target DNA. Cell 156(5):935–949. doi:10.1016/j.cell.2014.02.001

    Article  CAS  PubMed  Google Scholar 

  32. Ran FA, Hsu PD, Lin CY, Gootenberg JS, Konermann S, Trevino AE, Scott DA, Inoue A, Matoba S, Zhang Y, Zhang F (2013) Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell 154(6):1380–1389. doi:10.1016/j.cell.2013.08.021

    Article  CAS  PubMed  Google Scholar 

  33. Jiang W, Bikard D, Cox D, Zhang F, Marraffini LA (2013) RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nat Biotechnol 31(3):233–239. doi:10.1038/nbt.2508

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. DiCarlo JE, Norville JE, Mali P, Rios X, Aach J, Church GM (2013) Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems. Nucleic Acids Res 41(7):4336–4343. doi:10.1093/nar/gkt135

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Mansour WY, Schumacher S, Rosskopf R, Rhein T, Schmidt-Petersen F, Gatzemeier F, Haag F, Borgmann K, Willers H, Dahm-Daphi J (2008) Hierarchy of nonhomologous end-joining, single-strand annealing and gene conversion at site-directed DNA double-strand breaks. Nucleic Acids Res 36(12):4088–4098. doi:10.1093/nar/gkn347

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Kuhar R, Gwiazda KS, Humbert O, Mandt T, Pangallo J, Brault M, Khan I, Maizels N, Rawlings DJ, Scharenberg AM, Certo MT (2013) Novel fluorescent genome editing reporters for monitoring DNA repair pathway utilization at endonuclease-induced breaks. Nucleic Acids Res. doi:10.1093/nar/gkt872

    PubMed Central  PubMed  Google Scholar 

  37. Fu Y, Sander JD, Reyon D, Cascio VM, Joung JK (2014) Improving CRISPR-Cas nuclease specificity using truncated guide RNAs. Nat Biotechnol 32(3):279–284. doi:10.1038/nbt.2808

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Yang H, Wang H, Shivalila CS, Cheng AW, Shi L, Jaenisch R (2013) One-step generation of mice carrying reporter and conditional alleles by CRISPR/Cas-mediated genome engineering. Cell 154(6):1370–1379. doi:10.1016/j.cell.2013.08.022

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Kiro R, Shitrit D, Qimron U (2014) Efficient engineering of a bacteriophage genome using the type I-E CRISPR-Cas system. RNA Biol 11(1):42–44. doi:10.4161/rna.27766

    Article  CAS  PubMed  Google Scholar 

  40. Tsai SQ, Wyvekens N, Khayter C, Foden JA, Thapar V, Reyon D, Goodwin MJ, Aryee MJ, Joung JK (2014) Dimeric CRISPR RNA-guided FokI nucleases for highly specific genome editing. Nat Biotechnol 32(6):569–576. doi:10.1038/nbt.2908

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Qi LS, Larson MH, Gilbert LA, Doudna JA, Weissman JS, Arkin AP, Lim WA (2013) Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 152(5):1173–1183. doi:10.1016/j.cell.2013.02.022

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Bikard D, Jiang W, Samai P, Hochschild A, Zhang F, Marraffini LA (2013) Programmable repression and activation of bacterial gene expression using an engineered CRISPR-Cas system. Nucleic Acids Res 41(15):7429–7437. doi:10.1093/nar/gkt520

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Gilbert LA, Larson MH, Morsut L, Liu Z, Brar GA, Torres SE, Stern-Ginossar N, Brandman O, Whitehead EH, Doudna JA, Lim WA, Weissman JS, Qi LS (2013) CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell 154(2):442–451. doi:10.1016/j.cell.2013.06.044

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Konermann S, Brigham MD, Trevino AE, Hsu PD, Heidenreich M, Cong L, Platt RJ, Scott DA, Church GM, Zhang F (2013) Optical control of mammalian endogenous transcription and epigenetic states. Nature 500(7463):472–476. doi:10.1038/nature12466

    CAS  PubMed  Google Scholar 

  45. Gietz RD, Schiestl RH (2007) Large-scale high-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method. Nat Protoc 2(1):38–41. doi:10.1038/nprot.2007.15

    Article  CAS  PubMed  Google Scholar 

  46. Gietz RD, Schiestl RH (2007) High-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method. Nat Protoc 2(1):31–34. doi:10.1038/nprot.2007.13

    Article  CAS  PubMed  Google Scholar 

  47. Wang L, Lin J, Zhang T, Xu K, Ren C, et al. (2013) Simultaneous screening and validation of effective zinc finger nucleases in yeast. PLoS One 8:e64687

  48. Ichikawa K, Eki T (2006) A novel yeast-based reporter assay system for the sensitive detection of genotoxic agents mediated by a DNA damage-inducible LexA-GAL4 protein. J Biochem 139(1):105–112. doi:10.1093/jb/mvj011

    Article  CAS  PubMed  Google Scholar 

  49. Voth WP, Richards JD, Shaw JM, Stillman DJ (2001) Yeast vectors for integration at the HO locus. Nucleic Acids Res 29(12):e59. doi:10.1093/nar/29.12.e59

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Ramakrishna S, Cho SW, Kim S, Song M, Gopalappa R, Kim JS, Kim H (2014) Surrogate reporter-based enrichment of cells containing RNA-guided Cas9 nuclease-induced mutations. Nat Commun 5:3378. doi:10.1038/ncomms4378

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the colleagues in Professor Zhang’s lab for their excellent technical assistance and helpful discussions. This work was supported by National Science and Technology Major Project of China [2014ZX0801009B].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiying Zhang.

Additional information

K. Xu and C. Ren contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2418 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, K., Ren, C., Liu, Z. et al. Efficient genome engineering in eukaryotes using Cas9 from Streptococcus thermophilus . Cell. Mol. Life Sci. 72, 383–399 (2015). https://doi.org/10.1007/s00018-014-1679-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-014-1679-z

Keywords

Navigation