Skip to main content
Log in

The phosphoinositide PI(3,5)P2 mediates activation of mammalian but not plant TPC proteins: functional expression of endolysosomal channels in yeast and plant cells

  • Research Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Two-pore channel proteins (TPC) encode intracellular ion channels in both animals and plants. In mammalian cells, the two isoforms (TPC1 and TPC2) localize to the endo-lysosomal compartment, whereas the plant TPC1 protein is targeted to the membrane surrounding the large lytic vacuole. Although it is well established that plant TPC1 channels activate in a voltage- and calcium-dependent manner in vitro, there is still debate on their activation under physiological conditions. Likewise, the mode of animal TPC activation is heavily disputed between two camps favoring as activator either nicotinic acid adenine dinucleotide phosphate (NAADP) or the phosphoinositide PI(3,5)P2. Here, we investigated TPC current responses to either of these second messengers by whole-vacuole patch-clamp experiments on isolated vacuoles of Arabidopsis thaliana. After expression in mesophyll protoplasts from Arabidopsis tpc1 knock-out plants, we detected the Arabidopsis TPC1-EGFP and human TPC2-EGFP fusion proteins at the membrane of the large central vacuole. Bath (cytosolic) application of either NAADP or PI(3,5)P2 did not affect the voltage- and calcium-dependent characteristics of AtTPC1-EGFP. By contrast, PI(3,5)P2 elicited large sodium currents in hTPC2-EGFP-containing vacuoles, while NAADP had no such effect. Analogous results were obtained when PI(3,5)P2 was applied to hTPC2 expressed in baker’s yeast giant vacuoles. Our results underscore the fundamental differences in the mode of current activation and ion selectivity between animal and plant TPC proteins and corroborate the PI(3,5)P2-mediated activation and Na+ selectivity of mammalian TPC2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

EGFP:

Enhanced green fluorescent protein

EGTA:

Ethylene glycol tetraacetic acid

NAADP:

Nicotinic acid adenine dinucleotide phosphate

PI(3,5)P2 :

Phosphatidylinositol-(3,5)-bisphosphate

TPC:

Two-pore channel

VM:

Vacuolar membrane

References

  1. Yu FH, Yarov-Yarovoy V, Gutman GA, Catterall WA (2005) Overview of molecular relationships in the voltage-gated ion channel superfamily. Pharmacol Rev 57(4):387–395

    Article  PubMed  CAS  Google Scholar 

  2. Rietdorf K, Funnell TM, Ruas M, Heinemann J, Parrington J, Galione A (2011) Two-pore channels form homo- and heterodimers. J Biol Chem 286(43):37058–37062

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  3. Peiter E, Maathuis FJ, Mills LN, Knight H, Pelloux J, Hetherington AM, Sanders D (2005) The vacuolar Ca2+-activated channel TPC1 regulates germination and stomatal movement. Nature 434(7031):404–408

    Article  PubMed  CAS  Google Scholar 

  4. Ranf S, Wunnenberg P, Lee J, Becker D, Dunkel M, Hedrich R, Scheel D, Dietrich P (2008) Loss of the vacuolar cation channel, AtTPC1, does not impair Ca2+ signals induced by abiotic and biotic stresses. Plant J 53(2):287–299

    Article  PubMed  CAS  Google Scholar 

  5. Dadacz-Narloch B, Beyhl D, Larisch C, Lopez-Sanjurjo EJ, Reski R, Kuchitsu K, Muller TD, Becker D, Schonknecht G, Hedrich R (2011) A novel calcium binding site in the slow vacuolar cation channel TPC1 senses luminal calcium levels. Plant Cell 23(7):2696–2707

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  6. Hedrich R, Neher E (1987) Cytoplasmic calcium regulates voltage-dependent ion channels in plant vacuoles. Nature 329:833–835

    Article  Google Scholar 

  7. Gambale F, Cantu AM, Carpaneto A, Keller BU (1993) Fast and slow activation of voltage-dependent ion channels in radish vacuoles. Biophys J 65(5):1837–1843

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  8. Allen GJ, Sanders D (1996) Control of ionic currents in guard cell vacuoles by cytosolic and luminal calcium. Plant J 10:1055–1069

    Article  PubMed  CAS  Google Scholar 

  9. Pottosin II, Dobrovinskaya OR, Muniz J (2001) Conduction of monovalent and divalent cations in the slow vacuolar channel. J Membrane Biol 181:55–65

    CAS  Google Scholar 

  10. Gradogna A, Scholz-Starke J, Gutla PV, Carpaneto A (2009) Fluorescence combined with excised patch: measuring calcium currents in plant cation channels. Plant J 58:175–182

    Article  PubMed  CAS  Google Scholar 

  11. Hedrich R, Marten I (2011) TPC1-SV channels gain shape. Mol Plant 4(3):428–441

    Article  PubMed  CAS  Google Scholar 

  12. Hedrich R (2012) Ion channels in plants. Physiol Rev 92(4):1777–1811

    Article  PubMed  CAS  Google Scholar 

  13. Schulze C, Sticht H, Meyerhoff P, Dietrich P (2011) Differential contribution of EF-hands to the Ca2+-dependent activation in the plant two-pore channel TPC1. Plant J 68(3):424–432

    Article  PubMed  CAS  Google Scholar 

  14. Rienmuller F, Beyhl D, Lautner S, Fromm J, Al-Rasheid KA, Ache P, Farmer EE, Marten I, Hedrich R (2010) Guard cell-specific calcium sensitivity of high density and activity SV/TPC1 channels. Plant Cell Physiol 51(9):1548–1554

    Article  PubMed  Google Scholar 

  15. Pei ZM, Ward JM, Schroeder JI (1999) Magnesium sensitizes slow vacuolar channels to physiological cytosolic calcium and inhibits fast vacuolar channels in fava bean guard cell vacuoles. Plant Physiol 121(3):977–986

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  16. Carpaneto A, Cantù AM, Gambale F (2001) Effects of cytoplasmic Mg2+ on slowly activating channels in isolated vacuoles of Beta vulgaris. Planta 213:457–468

    Article  PubMed  CAS  Google Scholar 

  17. Carpaneto A, Cantu AM, Gambale F (1999) Redox agents regulate ion channel activity in vacuoles from higher plant cells. FEBS Lett 442(2–3):129–132

    Article  PubMed  CAS  Google Scholar 

  18. Scholz-Starke J, De Angeli A, Ferraretto C, Paluzzi S, Gambale F, Carpaneto A (2004) Redox-dependent modulation of the carrot SV channel by cytosolic pH. FEBS Lett 576(3):449–454

    Article  PubMed  CAS  Google Scholar 

  19. Scholz-Starke J, Gambale F, Carpaneto A (2005) Modulation of plant ion channels by oxidizing and reducing agents. Arch Biochem Biophys 434(1):43–50

    Article  PubMed  CAS  Google Scholar 

  20. Scholz-Starke J, Carpaneto A, Gambale F (2006) On the interaction of neomycin with the slow vacuolar channel of Arabidopsis thaliana. J Gen Physiol 127(3):329–340

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  21. Gutla PVK, Boccaccio A, De Angeli A, Gambale F, Carpaneto A (2012) Modulation of plant TPC channels by polyunsaturated fatty acids. J Exp Bot 63(17):6187–6197

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  22. Calcraft PJ et al (2009) NAADP mobilizes calcium from acidic organelles through two-pore channels. Nature 459(7246):596–600

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  23. Guse AH, Lee HC (2008) NAADP: a universal Ca2+ trigger. Sci Signal 1(44):re10

    Article  PubMed  Google Scholar 

  24. Walseth TF, Lin-Moshier Y, Jain P, Ruas M, Parrington J, Galione A, Marchant JS, Slama JT (2012) Photoaffinity labeling of high affinity nicotinic acid adenine dinucleotide phosphate (NAADP)-binding proteins in sea urchin egg. J Biol Chem 287(4):2308–2315

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  25. Lin-Moshier Y, Walseth TF, Churamani D, Davidson SM, Slama JT, Hooper R, Brailoiu E, Patel S, Marchant JS (2012) Photoaffinity labeling of nicotinic acid adenine dinucleotide phosphate (NAADP) targets in mammalian cells. J Biol Chem 287(4):2296–2307

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  26. Morgan AJ, Galione A (2013) Two-pore channels (TPCs): current controversies. BioEssays 36(2):173–183

    Article  PubMed  Google Scholar 

  27. Pitt SJ, Funnell TM, Sitsapesan M, Venturi E, Rietdorf K, Ruas M, Ganesan A, Gosain R, Churchill GC, Zhu MX, Parrington J, Galione A, Sitsapesan R (2010) TPC2 is a novel NAADP-sensitive Ca2+release channel, operating as a dual sensor of luminal pH and Ca2+. J Biol Chem 285(45):35039–35046

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  28. Schieder M, Rotzer K, Bruggemann A, Biel M, Wahl-Schott CA (2010) Characterization of two-pore channel 2 (TPCN2)-mediated Ca2+currents in isolated lysosomes. J Biol Chem 285(28):21219–21222

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  29. Wang X, Zhang X, Dong XP, Samie M, Li X, Cheng X, Goschka A, Shen D, Zhou Y, Harlow J, Zhu MX, Clapham DE, Ren D, Xu H (2012) TPC proteins are phosphoinositide-activated sodium-selective ion channels in endosomes and lysosomes. Cell 151(2):372–383

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  30. Meijer HJ, Munnik T (2003) Phospholipid-based signaling in plants. Annu Rev Plant Biol 54:265–306

    Article  PubMed  CAS  Google Scholar 

  31. Heilmann I (2009) Using genetic tools to understand plant phosphoinositide signalling. Trends Plant Sci 14(3):171–179

    Article  PubMed  CAS  Google Scholar 

  32. Larisch N, Schulze C, Galione A, Dietrich P (2012) An N-terminal dileucine motif directs two-pore channels to the tonoplast of plant cells. Traffic 13(7):1012–1022

    Article  PubMed  CAS  Google Scholar 

  33. Costa A, Gutla PV, Boccaccio A, Scholz-Starke J, Festa M, Basso B, Zanardi I, Pusch M, Schiavo FL, Gambale F, Carpaneto A (2012) The Arabidopsis central vacuole as an expression system for intracellular transporters: functional characterization of the Cl/H+exchanger CLC-7. J Physiol 590(Pt 15):3421–3430

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  34. Tzfira T, Tian GW, Lacroix B, Vyas S, Li J, Leitner-Dagan Y, Krichevsky A, Taylor T, Vainstein A, Citovsky V (2005) pSAT vectors: a modular series of plasmids for autofluorescent protein tagging and expression of multiple genes in plants. Plant Mol Biol 57(4):503–516

    Article  PubMed  CAS  Google Scholar 

  35. Yoo SD, Cho YH, Sheen J (2007) Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nat Protoc 2(7):1565–1572

    Article  PubMed  CAS  Google Scholar 

  36. Abel S, Theologis A (1994) Transient transformation of Arabidopsis leaf protoplasts: a versatile experimental system to study gene expression. Plant J 5(3):421–427

    Article  PubMed  CAS  Google Scholar 

  37. Tanaka K, Nakafuku M, Tamanoi F, Kaziro Y, Matsumoto K, Toh-e A (1990) IRA2, a second gene of Saccharomyces cerevisiae that encodes a protein with a domain homologous to mammalian ras GTPase-activating protein. Mol Cell Biol 10(8):4303–4313

    PubMed  CAS  PubMed Central  Google Scholar 

  38. Rentsch D, Laloi M, Rouhara I, Schmelzer E, Delrot S, Frommer WB (1995) NTR1 encodes a high affinity oligopeptide transporter in Arabidopsis. FEBS Lett 370(3):264–268

    Article  PubMed  CAS  Google Scholar 

  39. Hamamoto S, Marui J, Matsuoka K, Higashi K, Igarashi K, Nakagawa T, Kuroda T, Mori Y, Murata Y, Nakanishi Y, Maeshima M, Yabe I, Uozumi N (2008) Characterization of a tobacco TPK-type K+ channel as a novel tonoplast K+ channel using yeast tonoplasts. J Biol Chem 283(4):1911–1920

    Article  PubMed  CAS  Google Scholar 

  40. Yabe I, Horiuchi K, Nakahara K, Hiyama T, Yamanaka T, Wang PC, Toda K, Hirata A, Ohsumi Y, Hirata R, Anraku Y, Kusaka I (1999) Patch clamp studies on V-type ATPase of vacuolar membrane of haploid Saccharomyces cerevisiae: preparation and utilization of a giant cell containing a giant vacuole. J Biol Chem 274(49):34903–34910

    Article  PubMed  CAS  Google Scholar 

  41. Nakanishi Y, Yabe I, Maeshima M (2003) Patch clamp analysis of a H+ pump heterologously expressed in giant yeast vacuoles. J Biochem 134(4):615–623

    Article  PubMed  CAS  Google Scholar 

  42. Brailoiu E, Churamani D, Cai X, Schrlau MG, Brailoiu GC, Gao X, Hooper R, Boulware MJ, Dun NJ, Marchant JS, Patel S (2009) Essential requirement for two-pore channel 1 in NAADP-mediated calcium signaling. J Cell Biol 186(2):201–209

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  43. Zhu MX, Ma J, Parrington J, Galione A, Evans AM (2010) TPCs: endolysosomal channels for Ca2+ mobilization from acidic organelles triggered by NAADP. FEBS Lett 584(10):1966–1974

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  44. Carpaneto A, Cantu AM, Busch H, Gambale F (1997) Ion channels in the vacuoles of the seagrass Posidonia oceanica. FEBS Lett 412(1):236–240

    Article  PubMed  CAS  Google Scholar 

  45. Ivashikina N, Hedrich R (2005) K+ currents through SV-type vacuolar channels are sensitive to elevated luminal sodium levels. Plant J 41(4):606–614

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Anna Moroni (University of Milan) for critical comments on the manuscript. The technical assistance of Francesca Quartino, Alessandro Barbin, Damiano Magliozzi (IBF-CNR, Italy) was highly appreciated. ACa was supported by the Italian “Progetti di Ricerca di Interesse Nazionale” (PRIN2010CSJX4F) and by Compagnia di San Paolo Research Foundation (ROL 291) and PD by the “Deutsche Forschungsgemeinschaft” (FOR964).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Armando Carpaneto.

Additional information

A. Boccaccio, J. Scholz-Starke, and S. Hamamoto contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boccaccio, A., Scholz-Starke, J., Hamamoto, S. et al. The phosphoinositide PI(3,5)P2 mediates activation of mammalian but not plant TPC proteins: functional expression of endolysosomal channels in yeast and plant cells. Cell. Mol. Life Sci. 71, 4275–4283 (2014). https://doi.org/10.1007/s00018-014-1623-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-014-1623-2

Keywords

Navigation