Skip to main content

Advertisement

Log in

Chromatin dynamics: H3K4 methylation and H3 variant replacement during development and in cancer

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

The dynamic nature of chromatin and its myriad modifications play a crucial role in gene regulation (expression and repression) during development, cellular survival, homeostasis, ageing, and apoptosis/death. Histone 3 lysine 4 methylation (H3K4 methylation) catalyzed by H3K4 specific histone methyltransferases is one of the more critical chromatin modifications that is generally associated with gene activation. Additionally, the deposition of H3 variant(s) in conjunction with H3K4 methylation generates an intricately reliable epigenetic regulatory circuit that guides transcriptional activity in normal development and homeostasis. Consequently, alterations in this epigenetic circuit may trigger disease development. The mechanistic relationship between H3 variant deposition and H3K4 methylation during normal development has remained foggy. However, recent investigations in the field of chromatin dynamics in various model organisms, tumors, cancer tissues, and cell lines cultured without and with therapeutic agents, as well as from model reconstituted chromatins reveal that there may be different subsets of chromatin assemblage with specific patterns of histone replacement executing similar functions. In this light, we attempt to explain the intricate control system that maintains chromatin structure and dynamics during normal development as well as during tumor development and cancer progression in this review. Our focus is to highlight the contribution of H3K4 methylation–histone variant crosstalk in regulating chromatin architecture and subsequently its function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Natoli G (2010) Maintaining cell identity through global control of genomic organization. Immunity 33(1):12–24. doi:10.1016/j.immuni.2010.07.006

    CAS  PubMed  Google Scholar 

  2. Xhemalce B, Kouzarides T (2010) A chromodomain switch mediated by histone H3 Lys 4 acetylation regulates heterochromatin assembly. Genes Dev 24(7):647–652. doi:10.1101/gad.1881710

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Bian C, Xu C, Ruan J, Lee KK, Burke TL, Tempel W, Barsyte D, Li J, Wu M, Zhou BO, Fleharty BE, Paulson A, Allali-Hassani A, Zhou JQ, Mer G, Grant PA, Workman JL, Zang J, Min J (2011) Sgf29 binds histone H3K4me2/3 and is required for SAGA complex recruitment and histone H3 acetylation. EMBO J 30(14):2829–2842. doi:10.1038/emboj.2011.193

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Huang PH, Chen CH, Chou CC, Sargeant AM, Kulp SK, Teng CM, Byrd JC, Chen CS (2011) Histone deacetylase inhibitors stimulate histone H3 lysine 4 methylation in part via transcriptional repression of histone H3 lysine 4 demethylases. Mol Pharmacol 79(1):197–206. doi:10.1124/mol.110.067702

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Hotz HR, Peters AH (2009) Protein demethylation required for DNA methylation. Nat Genet 41(1):10–11. doi:10.1038/ng0109-10

    CAS  PubMed  Google Scholar 

  6. Patra SK, Deb M, Patra A (2011) Molecular marks for epigenetic identification of developmental and cancer stem cells. Clin Epigenet 2(1):27–53. doi:10.1007/s13148-010-0016-0

    CAS  Google Scholar 

  7. Arents G, Moudrianakis EN (1995) The histone fold: a ubiquitous architectural motif utilized in DNA compaction and protein dimerization. Proc Natl Acad Sci USA 92(24):11170–11174

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Luger K, Mader AW, Richmond RK, Sargent DF, Richmond TJ (1997) Crystal structure of the nucleosome core particle at 2.8 Å resolution. Nature 389(6648):251–260. doi:10.1038/38444

    CAS  PubMed  Google Scholar 

  9. Latham JA, Dent SY (2007) Cross-regulation of histone modifications. Nat Struct Mol Biol 14(11):1017–1024. doi:10.1038/nsmb1307

    CAS  PubMed  Google Scholar 

  10. Patra SK, Patra A, Dahiya R (2001) Histone deacetylase and DNA methyltransferase in human prostate cancer. Biochem Biophys Res Commun 287(3):705–713. doi:10.1006/bbrc.2001.5639

    CAS  PubMed  Google Scholar 

  11. Patra SK, Patra A, Zhao H, Dahiya R (2002) DNA methyltransferase and demethylase in human prostate cancer. Mol Carcinog 33(3):163–171

    CAS  PubMed  Google Scholar 

  12. Vakoc CR, Sachdeva MM, Wang H, Blobel GA (2006) Profile of histone lysine methylation across transcribed mammalian chromatin. Mol Cell Biol 26(24):9185–9195. doi:10.1128/mcb.01529-06

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Hake SB, Allis CD (2006) Histone H3 variants and their potential role in indexing mammalian genomes: the “H3 barcode hypothesis”. Proc Natl Acad Sci USA 103(17):6428–6435. doi:10.1073/pnas.0600803103

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Kouzarides T (2007) Chromatin modifications and their function. Cell 128(4):693–705. doi:10.1016/j.cell.2007.02.005

    CAS  PubMed  Google Scholar 

  15. Zhang Y, Reinberg D (2001) Transcription regulation by histone methylation: interplay between different covalent modifications of the core histone tails. Genes Dev 15(18):2343–2360. doi:10.1101/gad.927301

    CAS  PubMed  Google Scholar 

  16. Mohan M, Lin C, Guest E, Shilatifard A (2010) Licensed to elongate: a molecular mechanism for MLL-based leukaemogenesis. Nat Rev Cancer 10(10):721–728. doi:10.1038/nrc2915

    CAS  PubMed  Google Scholar 

  17. Vakoc CR, Mandat SA, Olenchock BA, Blobel GA (2005) Histone H3 lysine 9 methylation and HP1gamma are associated with transcription elongation through mammalian chromatin. Mol Cell 19(3):381–391. doi:10.1016/j.molcel.2005.06.011

    CAS  PubMed  Google Scholar 

  18. Ooi SL, Priess JR, Henikoff S (2006) Histone H3.3 variant dynamics in the germline of Caenorhabditis elegans. PLoS Genet 2(6):e97. doi:10.1371/journal.pgen.0020097

    PubMed  PubMed Central  Google Scholar 

  19. Placek BJ, Huang J, Kent JR, Dorsey J, Rice L, Fraser NW, Berger SL (2009) The histone variant H3.3 regulates gene expression during lytic infection with herpes simplex virus type 1. J Virol 83(3):1416–1421. doi:10.1128/jvi.01276-08

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Knipe DM, Cliffe A (2008) Chromatin control of herpes simplex virus lytic and latent infection. Nat Rev Microbiol 6(3):211–221. doi:10.1038/nrmicro1794

    CAS  PubMed  Google Scholar 

  21. Fang R, Barbera AJ, Xu Y, Rutenberg M, Leonor T, Bi Q, Lan F, Mei P, Yuan GC, Lian C, Peng J, Cheng D, Sui G, Kaiser UB, Shi Y, Shi YG (2010) Human LSD2/KDM1b/AOF1 regulates gene transcription by modulating intragenic H3K4me2 methylation. Mol Cell 39(2):222–233. doi:10.1016/j.molcel.2010.07.008

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Cock-Rada AM, Medjkane S, Janski N, Yousfi N, Perichon M, Chaussepied M, Chluba J, Langsley G, Weitzman JB (2012) SMYD3 promotes cancer invasion by epigenetic upregulation of the metalloproteinase MMP-9. Cancer Res 72(3):810–820. doi:10.1158/0008-5472.can-11-1052

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Kim T, Buratowski S (2009) Dimethylation of H3K4 by Set1 recruits the Set3 histone deacetylase complex to 5′ transcribed regions. Cell 137(2):259–272. doi:10.1016/j.cell.2009.02.045

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Schwartzentruber J, Korshunov A, Liu XY, Jones DT, Pfaff E, Jacob K, Sturm D, Fontebasso AM, Quang DA, Tonjes M, Hovestadt V, Albrecht S, Kool M, Nantel A, Konermann C, Lindroth A, Jager N, Rausch T, Ryzhova M, Korbel JO, Hielscher T, Hauser P, Garami M, Klekner A, Bognar L, Ebinger M, Schuhmann MU, Scheurlen W, Pekrun A, Fruhwald MC, Roggendorf W, Kramm C, Durken M, Atkinson J, Lepage P, Montpetit A, Zakrzewska M, Zakrzewski K, Liberski PP, Dong Z, Siegel P, Kulozik AE, Zapatka M, Guha A, Malkin D, Felsberg J, Reifenberger G, von Deimling A, Ichimura K, Collins VP, Witt H, Milde T, Witt O, Zhang C, Castelo-Branco P, Lichter P, Faury D, Tabori U, Plass C, Majewski J, Pfister SM, Jabado N (2012) Driver mutations in histone H3.3 and chromatin remodelling genes in paediatric glioblastoma. Nature 482(7384):226–231. doi:10.1038/nature10833

    CAS  PubMed  Google Scholar 

  25. Kim H, Heo K, Choi J, Kim K, An W (2011) Histone variant H3.3 stimulates HSP70 transcription through cooperation with HP1gamma. Nucleic Acids Res 39(19):8329–8341. doi:10.1093/nar/gkr529

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Huang J, Sengupta R, Espejo AB, Lee MG, Dorsey JA, Richter M, Opravil S, Shiekhattar R, Bedford MT, Jenuwein T, Berger SL (2007) p53 is regulated by the lysine demethylase LSD1. Nature 449(7158):105–108. doi:10.1038/nature06092

    CAS  PubMed  Google Scholar 

  27. Shi Y, Whetstine JR (2007) Dynamic regulation of histone lysine methylation by demethylases. Mol Cell 25(1):1–14. doi:10.1016/j.molcel.2006.12.010

    CAS  PubMed  Google Scholar 

  28. Yoshimi A, Kurokawa M (2011) Key roles of histone methyltransferase and demethylase in leukemogenesis. J Cell Biochem 112(2):415–424. doi:10.1002/jcb.22972

    CAS  PubMed  Google Scholar 

  29. Greer EL, Shi Y (2012) Histone methylation: a dynamic mark in health, disease and inheritance. Nat Rev Genet 13(5):343–357. doi:10.1038/nrg3173

    CAS  PubMed  PubMed Central  Google Scholar 

  30. van Dijk K, Marley KE, Jeong BR, Xu J, Hesson J, Cerny RL, Waterborg JH, Cerutti H (2005) Monomethyl histone H3 lysine 4 as an epigenetic mark for silenced euchromatin in Chlamydomonas. Plant Cell 17(9):2439–2453. doi:10.1105/tpc.105.034165

    PubMed  PubMed Central  Google Scholar 

  31. Schuettengruber B, Chourrout D, Vervoort M, Leblanc B, Cavalli G (2007) Genome regulation by polycomb and trithorax proteins. Cell 128(4):735–745. doi:10.1016/j.cell.2007.02.009

    CAS  PubMed  Google Scholar 

  32. Albert M, Helin K (2010) Histone methyltransferases in cancer. Semin Cell Dev Biol 21(2):209–220. doi:10.1016/j.semcdb.2009.10.007

    CAS  PubMed  Google Scholar 

  33. Lan F, Collins RE, De Cegli R, Alpatov R, Horton JR, Shi X, Gozani O, Cheng X, Shi Y (2007) Recognition of unmethylated histone H3 lysine 4 links BHC80 to LSD1-mediated gene repression. Nature 448(7154):718–722. doi:10.1038/nature06034

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Ng HH, Robert F, Young RA, Struhl K (2003) Targeted recruitment of Set1 histone methylase by elongating Pol II provides a localized mark and memory of recent transcriptional activity. Mol Cell 11(3):709–719

    CAS  PubMed  Google Scholar 

  35. Chan CS, Rastelli L, Pirrotta V (1994) A Polycomb response element in the Ubx gene that determines an epigenetically inherited state of repression. EMBO J 13(11):2553–2564

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Tillib S, Petruk S, Sedkov Y, Kuzin A, Fujioka M, Goto T, Mazo A (1999) Trithorax- and Polycomb-group response elements within an Ultrabithorax transcription maintenance unit consist of closely situated but separable sequences. Mol Cell Biol 19(7):5189–5202

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Fritsch C, Brown JL, Kassis JA, Muller J (1999) The DNA-binding polycomb group protein pleiohomeotic mediates silencing of a Drosophila homeotic gene. Development (Cambridge, England) 126(17):3905–3913

    CAS  Google Scholar 

  38. Eissenberg JC, Shilatifard A (2010) Histone H3 lysine 4 (H3K4) methylation in development and differentiation. Dev Biol 339(2):240–249. doi:10.1016/j.ydbio.2009.08.017

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Eot-Houllier G, Fulcrand G, Watanabe Y, Magnaghi-Jaulin L, Jaulin C (2008) Histone deacetylase 3 is required for centromeric H3K4 deacetylation and sister chromatid cohesion. Genes Dev 22(19):2639–2644. doi:10.1101/gad.484108

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Lee MG, Villa R, Trojer P, Norman J, Yan KP, Reinberg D, Di Croce L, Shiekhattar R (2007) Demethylation of H3K27 regulates polycomb recruitment and H2A ubiquitination. Science 318(5849):447–450. doi:10.1126/science.1149042

    CAS  PubMed  Google Scholar 

  41. Guccione E, Bassi C, Casadio F, Martinato F, Cesaroni M, Schuchlautz H, Luscher B, Amati B (2007) Methylation of histone H3R2 by PRMT6 and H3K4 by an MLL complex are mutually exclusive. Nature 449(7164):933–937. doi:10.1038/nature06166

    CAS  PubMed  Google Scholar 

  42. Okada Y, Feng Q, Lin Y, Jiang Q, Li Y, Coffield VM, Su L, Xu G, Zhang Y (2005) hDOT1L links histone methylation to leukemogenesis. Cell 121(2):167–178. doi:10.1016/j.cell.2005.02.020

    CAS  PubMed  Google Scholar 

  43. Kim J, Guermah M, McGinty RK, Lee JS, Tang Z, Milne TA, Shilatifard A, Muir TW, Roeder RG (2009) RAD6-Mediated transcription-coupled H2B ubiquitylation directly stimulates H3K4 methylation in human cells. Cell 137(3):459–471. doi:10.1016/j.cell.2009.02.027

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Laribee RN, Krogan NJ, Xiao T, Shibata Y, Hughes TR, Greenblatt JF, Strahl BD (2005) BUR kinase selectively regulates H3 K4 trimethylation and H2B ubiquitylation through recruitment of the PAF elongation complex. Curr Biol 15(16):1487–1493. doi:10.1016/j.cub.2005.07.028

    CAS  PubMed  Google Scholar 

  45. Krogan NJ, Dover J, Wood A, Schneider J, Heidt J, Boateng MA, Dean K, Ryan OW, Golshani A, Johnston M, Greenblatt JF, Shilatifard A (2003) The Paf1 complex is required for histone H3 methylation by COMPASS and Dot1p: linking transcriptional elongation to histone methylation. Mol Cell 11(3):721–729

    CAS  PubMed  Google Scholar 

  46. Thomson JP, Skene PJ, Selfridge J, Clouaire T, Guy J, Webb S, Kerr AR, Deaton A, Andrews R, James KD, Turner DJ, Illingworth R, Bird A (2010) CpG islands influence chromatin structure via the CpG-binding protein Cfp1. Nature 464(7291):1082–1086. doi:10.1038/nature08924

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Esteve PO, Chin HG, Benner J, Feehery GR, Samaranayake M, Horwitz GA, Jacobsen SE, Pradhan S (2009) Regulation of DNMT1 stability through SET7-mediated lysine methylation in mammalian cells. Proc Natl Acad Sci USA 106(13):5076–5081. doi:10.1073/pnas.0810362106

    PubMed  PubMed Central  Google Scholar 

  48. Wang J, Hevi S, Kurash JK, Lei H, Gay F, Bajko J, Su H, Sun W, Chang H, Xu G, Gaudet F, Li E, Chen T (2009) The lysine demethylase LSD1 (KDM1) is required for maintenance of global DNA methylation. Nat Genet 41(1):125–129. doi:10.1038/ng.268

    CAS  PubMed  Google Scholar 

  49. Ciccone DN, Su H, Hevi S, Gay F, Lei H, Bajko J, Xu G, Li E, Chen T (2009) KDM1B is a histone H3K4 demethylase required to establish maternal genomic imprints. Nature 461(7262):415–418. doi:10.1038/nature08315

    CAS  PubMed  Google Scholar 

  50. Weber M, Hellmann I, Stadler MB, Ramos L, Paabo S, Rebhan M, Schubeler D (2007) Distribution, silencing potential and evolutionary impact of promoter DNA methylation in the human genome. Nat Genet 39(4):457–466. doi:10.1038/ng1990

    CAS  PubMed  Google Scholar 

  51. Lv T, Yuan D, Miao X, Lv Y, Zhan P, Shen X, Song Y (2012) Over-expression of LSD1 promotes proliferation, migration and invasion in non-small cell lung cancer. PLoS One 7(4):e35065. doi:10.1371/journal.pone.0035065

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Guenther MG, Jenner RG, Chevalier B, Nakamura T, Croce CM, Canaani E, Young RA (2005) Global and Hox-specific roles for the MLL1 methyltransferase. Proc Natl Acad Sci USA 102(24):8603–8608. doi:10.1073/pnas.0503072102

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Rinn JL, Kertesz M, Wang JK, Squazzo SL, Xu X, Brugmann SA, Goodnough LH, Helms JA, Farnham PJ, Segal E, Chang HY (2007) Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell 129(7):1311–1323. doi:10.1016/j.cell.2007.05.022

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Williamson I, Eskeland R, Lettice LA, Hill AE, Boyle S, Grimes GR, Hill RE, Bickmore WA (2012) Anterior–posterior differences in HoxD chromatin topology in limb development. Development (Cambridge, England) 139(17):3157–3167. doi:10.1242/dev.081174

    CAS  Google Scholar 

  55. Khalil AM, Guttman M, Huarte M, Garber M, Raj A, Rivea Morales D, Thomas K, Presser A, Bernstein BE, van Oudenaarden A, Regev A, Lander ES, Rinn JL (2009) Many human large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression. Proc Natl Acad Sci USA 106(28):11667–11672. doi:10.1073/pnas.0904715106

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Orom UA, Shiekhattar R (2011) Noncoding RNAs and enhancers: complications of a long-distance relationship. Trends Genet 27(10):433–439. doi:10.1016/j.tig.2011.06.009

    CAS  PubMed  Google Scholar 

  57. Ahmad K, Henikoff S (2002) The histone variant H3.3 marks active chromatin by replication-independent nucleosome assembly. Mol Cell 9(6):1191–1200

    CAS  PubMed  Google Scholar 

  58. Szenker E, Ray-Gallet D, Almouzni G (2011) The double face of the histone variant H3.3. Cell Res 21(3):421–434. doi:10.1038/cr.2011.14

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Goldberg AD, Banaszynski LA, Noh KM, Lewis PW, Elsaesser SJ, Stadler S, Dewell S, Law M, Guo X, Li X, Wen D, Chapgier A, DeKelver RC, Miller JC, Lee YL, Boydston EA, Holmes MC, Gregory PD, Greally JM, Rafii S, Yang C, Scambler PJ, Garrick D, Gibbons RJ, Higgs DR, Cristea IM, Urnov FD, Zheng D, Allis CD (2010) Distinct factors control histone variant H3.3 localization at specific genomic regions. Cell 140(5):678–691. doi:10.1016/j.cell.2010.01.003

  60. Jin C, Zang C, Wei G, Cui K, Peng W, Zhao K, Felsenfeld G (2009) H3.3/H2A.Z double variant-containing nucleosomes mark ‘nucleosome-free regions’ of active promoters and other regulatory regions. Nat Genet 41(8):941–945. doi:10.1038/ng.409

    CAS  PubMed  PubMed Central  Google Scholar 

  61. van der Heijden GW, Derijck AA, Posfai E, Giele M, Pelczar P, Ramos L, Wansink DG, van der Vlag J, Peters AH, de Boer P (2007) Chromosome-wide nucleosome replacement and H3.3 incorporation during mammalian meiotic sex chromosome inactivation. Nat Genet 39(2):251–258. doi:10.1038/ng1949

    PubMed  Google Scholar 

  62. Bernstein BE, Mikkelsen TS, Xie X, Kamal M, Huebert DJ, Cuff J, Fry B, Meissner A, Wernig M, Plath K, Jaenisch R, Wagschal A, Feil R, Schreiber SL, Lander ES (2006) A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 125(2):315–326. doi:10.1016/j.cell.2006.02.041

    CAS  PubMed  Google Scholar 

  63. Houlard M, Berlivet S, Probst AV, Quivy JP, Hery P, Almouzni G, Gerard M (2006) CAF-1 is essential for heterochromatin organization in pluripotent embryonic cells. PLoS Genet 2(11):e181. doi:10.1371/journal.pgen.0020181

    PubMed  PubMed Central  Google Scholar 

  64. Pan G, Tian S, Nie J, Yang C, Ruotti V, Wei H, Jonsdottir GA, Stewart R, Thomson JA (2007) Whole-genome analysis of histone H3 lysine 4 and lysine 27 methylation in human embryonic stem cells. Cell Stem Cell 1(3):299–312. doi:10.1016/j.stem.2007.08.003

    CAS  PubMed  Google Scholar 

  65. Bush KM, Yuen BT, Barrilleaux BL, Riggs JW, O’Geen H, Cotterman RF, Knoepfler PS (2013) Endogenous mammalian histone H3.3 exhibits chromatin-related functions during development. Epigenet Chromatin 6(1):7. doi:10.1186/1756-8935-6-7

    Google Scholar 

  66. Delbarre E, Jacobsen BM, Reiner AH, Sorensen AL, Kuntziger T, Collas P (2010) Chromatin environment of histone variant H3.3 revealed by quantitative imaging and genome-scale chromatin and DNA immunoprecipitation. Mol Biol Cell 21(11):1872–1884. doi:10.1091/mbc.E09-09-0839

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Hodl M, Basler K (2012) Transcription in the absence of histone H3.2 and H3K4 methylation. Curr Biol 22(23):2253–2257. doi:10.1016/j.cub.2012.10.008

    CAS  PubMed  Google Scholar 

  68. Loyola A, Almouzni G (2007) Marking histone H3 variants: how, when and why? Trends Biochem Sci 32(9):425–433. doi:10.1016/j.tibs.2007.08.004

    CAS  PubMed  Google Scholar 

  69. Chow CM, Georgiou A, Szutorisz H, Maia e Silva A, Pombo A, Barahona I, Dargelos E, Canzonetta C, Dillon N (2005) Variant histone H3.3 marks promoters of transcriptionally active genes during mammalian cell division. EMBO Rep 6(4):354–360. doi:10.1038/sj.embor.7400366

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Jin C, Felsenfeld G (2006) Distribution of histone H3.3 in hematopoietic cell lineages. Proc Natl Acad Sci USA 103(3):574–579. doi:10.1073/pnas.0509974103

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Dhayalan A, Tamas R, Bock I, Tattermusch A, Dimitrova E, Kudithipudi S, Ragozin S, Jeltsch A (2011) The ATRX-ADD domain binds to H3 tail peptides and reads the combined methylation state of K4 and K9. Hum Mol Genet 20(11):2195–2203. doi:10.1093/hmg/ddr107

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Braunschweig U, Hogan GJ, Pagie L, van Steensel B (2009) Histone H1 binding is inhibited by histone variant H3.3. EMBO J 28(23):3635–3645. doi:10.1038/emboj.2009.301

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Nowak SJ, Corces VG (2004) Phosphorylation of histone H3: a balancing act between chromosome condensation and transcriptional activation. Trends Genet 20(4):214–220. doi:10.1016/j.tig.2004.02.007

    CAS  PubMed  Google Scholar 

  74. Hake SB, Garcia BA, Kauer M, Baker SP, Shabanowitz J, Hunt DF, Allis CD (2005) Serine 31 phosphorylation of histone variant H3.3 is specific to regions bordering centromeres in metaphase chromosomes. Proc Natl Acad Sci USA 102(18):6344–6349. doi:10.1073/pnas.0502413102

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Sullivan BA, Karpen GH (2004) Centromeric chromatin exhibits a histone modification pattern that is distinct from both euchromatin and heterochromatin. Nat Struct Mol Biol 11(11):1076–1083. doi:10.1038/nsmb845

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Bergmann JH, Rodriguez MG, Martins NM, Kimura H, Kelly DA, Masumoto H, Larionov V, Jansen LE, Earnshaw WC (2011) Epigenetic engineering shows H3K4me2 is required for HJURP targeting and CENP-A assembly on a synthetic human kinetochore. EMBO J 30(2):328–340. doi:10.1038/emboj.2010.329

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Okada M, Okawa K, Isobe T, Fukagawa T (2009) CENP-H-containing complex facilitates centromere deposition of CENP-A in cooperation with FACT and CHD1. Mol Biol Cell 20(18):3986–3995. doi:10.1091/mbc.E09-01-0065

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Shahbazian MD, Zhang K, Grunstein M (2005) Histone H2B ubiquitylation controls processive methylation but not monomethylation by Dot1 and Set1. Mol Cell 19(2):271–277. doi:10.1016/j.molcel.2005.06.010

    CAS  PubMed  Google Scholar 

  79. Zeitlin SG, Shelby RD, Sullivan KF (2001) CENP-A is phosphorylated by Aurora B kinase and plays an unexpected role in completion of cytokinesis. J Cell Biol 155(7):1147–1157. doi:10.1083/jcb.200108125

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Amato A, Schillaci T, Lentini L, Di Leonardo A (2009) CENPA overexpression promotes genome instability in pRb-depleted human cells. Mol Cancer 8:119. doi:10.1186/1476-4598-8-119

    PubMed  PubMed Central  Google Scholar 

  81. Krivtsov AV, Armstrong SA (2007) MLL translocations, histone modifications and leukaemia stem-cell development. Nat Rev Cancer 7(11):823–833. doi:10.1038/nrc2253

    CAS  PubMed  Google Scholar 

  82. Hamamoto R, Silva FP, Tsuge M, Nishidate T, Katagiri T, Nakamura Y, Furukawa Y (2006) Enhanced SMYD3 expression is essential for the growth of breast cancer cells. Cancer Sci 97(2):113–118. doi:10.1111/j.1349-7006.2006.00146.x

    CAS  PubMed  Google Scholar 

  83. Khan AQ, Bury JP, Brown SR, Riley SA, Corfe BM (2011) Keratin 8 expression in colon cancer associates with low faecal butyrate levels. BMC Gastroenterol 11:2. doi:10.1186/1471-230x-11-2

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Chen L, Firozi P, Barton M, Templeton NS (2007) Widespread, exceptionally high levels of histone H3 lysine 4 trimethylation largely mediate “privileged” gene expression. Gene Expr 13(4–5):271–282

    PubMed  Google Scholar 

  85. Deb M, Sengupta D, Patra SK (2012) Integrin-epigenetics: a system with imperative impact on cancer. Cancer Metastasis Rev 31(1–2):221–234. doi:10.1007/s10555-011-9341-9

    CAS  PubMed  Google Scholar 

  86. Yang X, Pursell B, Lu S, Chang TK, Mercurio AM (2009) Regulation of beta 4-integrin expression by epigenetic modifications in the mammary gland and during the epithelial-to-mesenchymal transition. J Cell Sci 122(Pt 14):2473–2480. doi:10.1242/jcs.049148

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Caretti A, Sirchia SM, Tabano S, Zulueta A, Dall’Olio F, Trinchera M (2012) DNA methylation and histone modifications modulate the beta1,3 galactosyltransferase beta3Gal-T5 native promoter in cancer cells. Int J Biochem Cell Biol 44(1):84–90. doi:10.1016/j.biocel.2011.09.010

    CAS  PubMed  Google Scholar 

  88. Pospisil V, Vargova K, Kokavec J, Rybarova J, Savvulidi F, Jonasova A, Necas E, Zavadil J, Laslo P, Stopka T (2011) Epigenetic silencing of the oncogenic miR-17-92 cluster during PU.1-directed macrophage differentiation. EMBO J 30(21):4450–4464. doi:10.1038/emboj.2011.317

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Lee SK, Calin GA (2011) Non-coding RNAs and cancer: new paradigms in oncology. Discov Med 11(58):245–254

    CAS  PubMed  Google Scholar 

  90. Gupta RA, Shah N, Wang KC, Kim J, Horlings HM, Wong DJ, Tsai MC, Hung T, Argani P, Rinn JL, Wang Y, Brzoska P, Kong B, Li R, West RB, van de Vijver MJ, Sukumar S, Chang HY (2010) Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature 464(7291):1071–1076. doi:10.1038/nature08975

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Suzuki H, Takatsuka S, Akashi H, Yamamoto E, Nojima M, Maruyama R, Kai M, Yamano HO, Sasaki Y, Tokino T, Shinomura Y, Imai K, Toyota M (2011) Genome-wide profiling of chromatin signatures reveals epigenetic regulation of MicroRNA genes in colorectal cancer. Cancer Res 71(17):5646–5658. doi:10.1158/0008-5472.can-11-1076

    CAS  PubMed  Google Scholar 

  92. Lagarkova MA, Volchkov PY, Lyakisheva AV, Philonenko ES, Kiselev SL (2006) Diverse epigenetic profile of novel human embryonic stem cell lines. Cell cycle (Georgetown, Tex) 5(4):416–420

    CAS  Google Scholar 

  93. Yeo S, Jeong S, Kim J, Han JS, Han YM, Kang YK (2007) Characterization of DNA methylation change in stem cell marker genes during differentiation of human embryonic stem cells. Biochem Biophys Res Commun 359(3):536–542. doi:10.1016/j.bbrc.2007.05.120

    CAS  PubMed  Google Scholar 

  94. Wang J, Lu F, Ren Q, Sun H, Xu Z, Lan R, Liu Y, Ward D, Quan J, Ye T, Zhang H (2011) Novel histone demethylase LSD1 inhibitors selectively target cancer cells with pluripotent stem cell properties. Cancer Res 71(23):7238–7249. doi:10.1158/0008-5472.can-11-0896

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Jin B, Yao B, Li JL, Fields CR, Delmas AL, Liu C, Robertson KD (2009) DNMT1 and DNMT3B modulate distinct polycomb-mediated histone modifications in colon cancer. Cancer Res 69(18):7412–7421. doi:10.1158/0008-5472.can-09-0116

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Easwaran H, Johnstone SE, Van Neste L, Ohm J, Mosbruger T, Wang Q, Aryee MJ, Joyce P, Ahuja N, Weisenberger D, Collisson E, Zhu J, Yegnasubramanian S, Matsui W, Baylin SB (2012) A DNA hypermethylation module for the stem/progenitor cell signature of cancer. Genome Res 22(5):837–849. doi:10.1101/gr.131169.111

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Shi Y, Lan F, Matson C, Mulligan P, Whetstine JR, Cole PA, Casero RA, Shi Y (2004) Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell 119(7):941–953. doi:10.1016/j.cell.2004.12.012

    CAS  PubMed  Google Scholar 

  98. Hayami S, Kelly JD, Cho HS, Yoshimatsu M, Unoki M, Tsunoda T, Field HI, Neal DE, Yamaue H, Ponder BA, Nakamura Y, Hamamoto R (2011) Overexpression of LSD1 contributes to human carcinogenesis through chromatin regulation in various cancers. Int J Cancer 128(3):574–586. doi:10.1002/ijc.25349

    CAS  PubMed  Google Scholar 

  99. Lee MG, Wynder C, Cooch N, Shiekhattar R (2005) An essential role for CoREST in nucleosomal histone 3 lysine 4 demethylation. Nature 437(7057):432–435. doi:10.1038/nature04021

    CAS  PubMed  Google Scholar 

  100. Reddy BY, Greco SJ, Patel PS, Trzaska KA, Rameshwar P (2009) RE-1-silencing transcription factor shows tumor-suppressor functions and negatively regulates the oncogenic TAC1 in breast cancer cells. Proc Natl Acad Sci USA 106(11):4408–4413. doi:10.1073/pnas.0809130106

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Metzger E, Wissmann M, Yin N, Muller JM, Schneider R, Peters AH, Gunther T, Buettner R, Schule R (2005) LSD1 demethylates repressive histone marks to promote androgen-receptor-dependent transcription. Nature 437(7057):436–439. doi:10.1038/nature04020

    CAS  PubMed  Google Scholar 

  102. Metzger E, Imhof A, Patel D, Kahl P, Hoffmeyer K, Friedrichs N, Muller JM, Greschik H, Kirfel J, Ji S, Kunowska N, Beisenherz-Huss C, Gunther T, Buettner R, Schule R (2010) Phosphorylation of histone H3T6 by PKCbeta(I) controls demethylation at histone H3K4. Nature 464(7289):792–796. doi:10.1038/nature08839

    CAS  PubMed  Google Scholar 

  103. Wissmann M, Yin N, Muller JM, Greschik H, Fodor BD, Jenuwein T, Vogler C, Schneider R, Gunther T, Buettner R, Metzger E, Schule R (2007) Cooperative demethylation by JMJD2C and LSD1 promotes androgen receptor-dependent gene expression. Nat Cell Biol 9(3):347–353. doi:10.1038/ncb1546

    CAS  PubMed  Google Scholar 

  104. Zeng J, Ge Z, Wang L, Li Q, Wang N, Bjorkholm M, Jia J, Xu D (2010) The histone demethylase RBP2 Is overexpressed in gastric cancer and its inhibition triggers senescence of cancer cells. Gastroenterology 138(3):981–992. doi:10.1053/j.gastro.2009.10.004

    CAS  PubMed  Google Scholar 

  105. Chen F, Yang H, Dong Z, Fang J, Wang P, Zhu T, Gong W, Fang R, Shi YG, Li Z, Xu Y (2013) Structural insight into substrate recognition by histone demethylase LSD2/KDM1b. Cell Res 23(2):306–309. doi:10.1038/cr.2013.17

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Fang R, Chen F, Dong Z, Hu D, Barbera AJ, Clark EA, Fang J, Yang Y, Mei P, Rutenberg M, Li Z, Zhang Y, Xu Y, Yang H, Wang P, Simon MD, Zhou Q, Li J, Marynick MP, Li X, Lu H, Kaiser UB, Kingston RE, Xu Y, Shi YG (2013) LSD2/KDM1B and its cofactor NPAC/GLYR1 endow a structural and molecular model for regulation of H3K4 demethylation. Mol Cell 49(3):558–570. doi:10.1016/j.molcel.2012.11.019

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Hou J, Wu J, Dombkowski A, Zhang K, Holowatyj A, Boerner JL, Yang ZQ (2012) Genomic amplification and a role in drug-resistance for the KDM5A histone demethylase in breast cancer. Am J Transl Res 4(3):247–256

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Xiang Y, Zhu Z, Han G, Ye X, Xu B, Peng Z, Ma Y, Yu Y, Lin H, Chen AP, Chen CD (2007) JARID1B is a histone H3 lysine 4 demethylase up-regulated in prostate cancer. Proc Natl Acad Sci USA 104(49):19226–19231. doi:10.1073/pnas.0700735104

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Urruticoechea A, Smith IE, Dowsett M (2005) Proliferation marker Ki-67 in early breast cancer. J Clin Oncol 23(28):7212–7220. doi:10.1200/jco.2005.07.501

    CAS  PubMed  Google Scholar 

  110. Polo SE, Theocharis SE, Grandin L, Gambotti L, Antoni G, Savignoni A, Asselain B, Patsouris E, Almouzni G (2010) Clinical significance and prognostic value of chromatin assembly factor-1 overexpression in human solid tumours. Histopathology 57(5):716–724. doi:10.1111/j.1365-2559.2010.03681.x

    PubMed  Google Scholar 

  111. Staibano S, Mascolo M, Mancini FP, Kisslinger A, Salvatore G, Di Benedetto M, Chieffi P, Altieri V, Prezioso D, Ilardi G, De Rosa G, Tramontano D (2009) Overexpression of chromatin assembly factor-1 (CAF-1) p60 is predictive of adverse behaviour of prostatic cancer. Histopathology 54(5):580–589. doi:10.1111/j.1365-2559.2009.03266.x

    PubMed  Google Scholar 

  112. Pena PV, Hom RA, Hung T, Lin H, Kuo AJ, Wong RP, Subach OM, Champagne KS, Zhao R, Verkhusha VV, Li G, Gozani O, Kutateladze TG (2008) Histone H3K4me3 binding is required for the DNA repair and apoptotic activities of ING1 tumor suppressor. J Mol Biol 380(2):303–312. doi:10.1016/j.jmb.2008.04.061

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Farrell AW, Halliday GM, Lyons JG (2011) Chromatin structure following UV-induced DNA damage-repair or death? Int J Mol Sci 12(11):8063–8085. doi:10.3390/ijms12118063

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Campos EI, Martinka M, Mitchell DL, Dai DL, Li G (2004) Mutations of the ING1 tumor suppressor gene detected in human melanoma abrogate nucleotide excision repair. Int J Oncol 25(1):73–80

    CAS  PubMed  Google Scholar 

  115. Davie JR (2003) Inhibition of histone deacetylase activity by butyrate. J Nutr 133[7 Suppl]:2485S–2493S

    CAS  PubMed  Google Scholar 

  116. Hsu DW, Chubb JR, Muramoto T, Pears CJ, Mahadevan LC (2012) Dynamic acetylation of lysine-4-trimethylated histone H3 and H3 variant biology in a simple multicellular eukaryote. Nucleic Acids Res 40(15):7247–7256. doi:10.1093/nar/gks367

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Meshorer E, Yellajoshula D, George E, Scambler PJ, Brown DT, Misteli T (2006) Hyperdynamic plasticity of chromatin proteins in pluripotent embryonic stem cells. Dev Cell 10(1):105–116. doi:10.1016/j.devcel.2005.10.017

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Lovejoy CA, Li W, Reisenweber S, Thongthip S, Bruno J, de Lange T, De S, Petrini JH, Sung PA, Jasin M, Rosenbluh J, Zwang Y, Weir BA, Hatton C, Ivanova E, Macconaill L, Hanna M, Hahn WC, Lue NF, Reddel RR, Jiao Y, Kinzler K, Vogelstein B, Papadopoulos N, Meeker AK (2012) Loss of ATRX, genome instability, and an altered DNA damage response are hallmarks of the alternative lengthening of telomeres pathway. PLoS Genet 8(7):e1002772. doi:10.1371/journal.pgen.1002772

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Li F, Adam L, Vadlamudi RK, Zhou H, Sen S, Chernoff J, Mandal M, Kumar R (2002) p21-activated kinase 1 interacts with and phosphorylates histone H3 in breast cancer cells. EMBO Rep 3(8):767–773. doi:10.1093/embo-reports/kvf157

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Jiang WQ, Nguyen A, Cao Y, Chang AC, Reddel RR (2011) HP1-mediated formation of alternative lengthening of telomeres-associated PML bodies requires HIRA but not ASF1a. PLoS One 6(2):e17036. doi:10.1371/journal.pone.0017036

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Sullivan LL, Boivin CD, Mravinac B, Song IY, Sullivan BA (2011) Genomic size of CENP-A domain is proportional to total alpha satellite array size at human centromeres and expands in cancer cells. Chromosome Res 19(4):457–470. doi:10.1007/s10577-011-9208-5

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Tomonaga T, Matsushita K, Yamaguchi S, Oohashi T, Shimada H, Ochiai T, Yoda K, Nomura F (2003) Overexpression and mistargeting of centromere protein-A in human primary colorectal cancer. Cancer Res 63(13):3511–3516

    CAS  PubMed  Google Scholar 

  123. Olszak AM, van Essen D, Pereira AJ, Diehl S, Manke T, Maiato H, Saccani S, Heun P (2011) Heterochromatin boundaries are hotspots for de novo kinetochore formation. Nat Cell Biol 13(7):799–808. doi:10.1038/ncb2272

    CAS  PubMed  Google Scholar 

  124. Maehara K, Takahashi K, Saitoh S (2010) CENP-A reduction induces a p53-dependent cellular senescence response to protect cells from executing defective mitoses. Mol Cell Biol 30(9):2090–2104. doi:10.1128/mcb.01318-09

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Meraldi P, Honda R, Nigg EA (2002) Aurora-A overexpression reveals tetraploidization as a major route to centrosome amplification in p53−/− cells. EMBO J 21(4):483–492

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Fu J, Bian M, Jiang Q, Zhang C (2007) Roles of Aurora kinases in mitosis and tumorigenesis. Mol Cancer Res 5(1):1–10. doi:10.1158/1541-7786.mcr-06-0208

    CAS  PubMed  Google Scholar 

  127. Kim H, Lee M, Lee S, Park B, Koh W, Lee DJ, Lim DS, Lee S (2009) Cancer-upregulated gene 2 (CUG2), a new component of centromere complex, is required for kinetochore function. Mol Cells 27(6):697–701. doi:10.1007/s10059-009-0083-2

    CAS  PubMed  Google Scholar 

  128. Prendergast L, van Vuuren C, Kaczmarczyk A, Doering V, Hellwig D, Quinn N, Hoischen C, Diekmann S, Sullivan KF (2011) Premitotic assembly of human CENPs -T and -W switches centromeric chromatin to a mitotic state. PLoS Biol 9(6):e1001082. doi:10.1371/journal.pbio.1001082

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Wiedemann SM, Mildner SN, Bonisch C, Israel L, Maiser A, Matheisl S, Straub T, Merkl R, Leonhardt H, Kremmer E, Schermelleh L, Hake SB (2010) Identification and characterization of two novel primate-specific histone H3 variants, H3.X and H3.Y. J Cell Biol 190(5):777–791. doi:10.1083/jcb.201002043

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Schenk R, Jenke A, Zilbauer M, Wirth S, Postberg J (2011) H3.5 is a novel hominid-specific histone H3 variant that is specifically expressed in the seminiferous tubules of human testes. Chromosoma 120(3):275–285. doi:10.1007/s00412-011-0310-4

    CAS  PubMed  Google Scholar 

  131. Akiyama T, Suzuki O, Matsuda J, Aoki F (2011) Dynamic replacement of histone H3 variants reprograms epigenetic marks in early mouse embryos. PLoS Genet 7(10):e1002279. doi:10.1371/journal.pgen.1002279

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Yuan G, Zhu B (2012) Histone variants and epigenetic inheritance. Biochim Biophys Acta 1819(3–4):222–229. doi:10.1016/j.bbagrm.2011.06.007

    CAS  Google Scholar 

  133. Polo SE, Roche D, Almouzni G (2006) New histone incorporation marks sites of UV repair in human cells. Cell 127(3):481–493. doi:10.1016/j.cell.2006.08.049

    CAS  PubMed  Google Scholar 

  134. Hake SB, Garcia BA, Duncan EM, Kauer M, Dellaire G, Shabanowitz J, Bazett-Jones DP, Allis CD, Hunt DF (2006) Expression patterns and post-translational modifications associated with mammalian histone H3 variants. J Biol Chem 281(1):559–568. doi:10.1074/jbc.M509266200

    CAS  PubMed  Google Scholar 

  135. Drane P, Ouararhni K, Depaux A, Shuaib M, Hamiche A (2010) The death-associated protein DAXX is a novel histone chaperone involved in the replication-independent deposition of H3.3. Genes Dev 24(12):1253–1265. doi:10.1101/gad.566910

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Wong LH, Ren H, Williams E, McGhie J, Ahn S, Sim M, Tam A, Earle E, Anderson MA, Mann J, Choo KH (2009) Histone H3.3 incorporation provides a unique and functionally essential telomeric chromatin in embryonic stem cells. Genome Res 19(3):404–414. doi:10.1101/gr.084947.108

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Santenard A, Ziegler-Birling C, Koch M, Tora L, Bannister AJ, Torres-Padilla ME (2010) Heterochromatin formation in the mouse embryo requires critical residues of the histone variant H3.3. Nat Cell Biol 12(9):853–862. doi:10.1038/ncb2089

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Hamiche A, Shuaib M (2012) Chaperoning the histone H3 family. Biochim Biophys Acta 1819(3–4):230–237. doi:10.1016/j.bbagrm.2011.08.009

    CAS  Google Scholar 

  139. Jansen LE, Black BE, Foltz DR, Cleveland DW (2007) Propagation of centromeric chromatin requires exit from mitosis. J Cell Biol 176(6):795–805. doi:10.1083/jcb.200701066

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Hemmerich P, Weidtkamp-Peters S, Hoischen C, Schmiedeberg L, Erliandri I, Diekmann S (2008) Dynamics of inner kinetochore assembly and maintenance in living cells. J Cell Biol 180(6):1101–1114. doi:10.1083/jcb.200710052

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Schuh M, Lehner CF, Heidmann S (2007) Incorporation of Drosophila CID/CENP-A and CENP-C into centromeres during early embryonic anaphase. Curr Biol 17(3):237–243. doi:10.1016/j.cub.2006.11.051

    CAS  PubMed  Google Scholar 

  142. Stein AB, Jones TA, Herron TJ, Patel SR, Day SM, Noujaim SF, Milstein ML, Klos M, Furspan PB, Jalife J, Dressler GR (2011) Loss of H3K4 methylation destabilizes gene expression patterns and physiological functions in adult murine cardiomyocytes. J Clin Invest 121(7):2641–2650. doi:10.1172/jci44641

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Delaval K, Govin J, Cerqueira F, Rousseaux S, Khochbin S, Feil R (2007) Differential histone modifications mark mouse imprinting control regions during spermatogenesis. EMBO J 26(3):720–729. doi:10.1038/sj.emboj.7601513

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Glaser S, Lubitz S, Loveland KL, Ohbo K, Robb L, Schwenk F, Seibler J, Roellig D, Kranz A, Anastassiadis K, Stewart AF (2009) The histone 3 lysine 4 methyltransferase, Mll2, is only required briefly in development and spermatogenesis. Epigenet Chromatin 2(1):5. doi:10.1186/1756-8935-2-5

    Google Scholar 

  145. Carrell DT, Hammoud SS (2010) The human sperm epigenome and its potential role in embryonic development. Mol Hum Reprod 16(1):37–47. doi:10.1093/molehr/gap090

    CAS  PubMed  Google Scholar 

  146. Muramoto T, Muller I, Thomas G, Melvin A, Chubb JR (2010) Methylation of H3K4 is required for inheritance of active transcriptional states. Curr Biol 20(5):397–406. doi:10.1016/j.cub.2010.01.017

    CAS  PubMed  Google Scholar 

  147. Zhou BO, Zhou JQ (2011) Recent transcription-induced histone H3 lysine 4 (H3K4) methylation inhibits gene reactivation. J Biol Chem 286(40):34770–34776. doi:10.1074/jbc.M111.273128

    CAS  PubMed  PubMed Central  Google Scholar 

  148. He XJ, Chen T, Zhu JK (2011) Regulation and function of DNA methylation in plants and animals. Cell Res 21(3):442–465. doi:10.1038/cr.2011.23

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Vermeulen M, Timmers HT (2010) Grasping trimethylation of histone H3 at lysine 4. Epigenomics 2(3):395–406. doi:10.2217/epi.10.11

    CAS  PubMed  Google Scholar 

  150. Murata K, Kouzarides T, Bannister AJ, Gurdon JB (2010) Histone H3 lysine 4 methylation is associated with the transcriptional reprogramming efficiency of somatic nuclei by oocytes. Epigenet Chromatin 3(1):4. doi:10.1186/1756-8935-3-4

    Google Scholar 

  151. Dambacher S, Hahn M, Schotta G (2010) Epigenetic regulation of development by histone lysine methylation. Heredity (Edinb) 105(1):24–37. doi:10.1038/hdy.2010.49

    CAS  Google Scholar 

  152. Li Y, Reddy MA, Miao F, Shanmugam N, Yee JK, Hawkins D, Ren B, Natarajan R (2008) Role of the histone H3 lysine 4 methyltransferase, SET7/9, in the regulation of NF-kappaB-dependent inflammatory genes. Relevance to diabetes and inflammation. J Biol Chem 283(39):26771–26781. doi:10.1074/jbc.M802800200

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Rougeulle C, Navarro P, Avner P (2003) Promoter-restricted H3 Lys 4 di-methylation is an epigenetic mark for monoallelic expression. Hum Mol Genet 12(24):3343–3348. doi:10.1093/hmg/ddg351

    CAS  PubMed  Google Scholar 

  154. Heintzman ND, Stuart RK, Hon G, Fu Y, Ching CW, Hawkins RD, Barrera LO, Van Calcar S, Qu C, Ching KA, Wang W, Weng Z, Green RD, Crawford GE, Ren B (2007) Distinct and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome. Nat Genet 39(3):311–318. doi:10.1038/ng1966

    CAS  PubMed  Google Scholar 

  155. Barski A, Cuddapah S, Cui K, Roh TY, Schones DE, Wang Z, Wei G, Chepelev I, Zhao K (2007) High-resolution profiling of histone methylations in the human genome. Cell 129(4):823–837. doi:10.1016/j.cell.2007.05.009

    CAS  PubMed  Google Scholar 

  156. Loyola A, Bonaldi T, Roche D, Imhof A, Almouzni G (2006) PTMs on H3 variants before chromatin assembly potentiate their final epigenetic state. Mol Cell 24(2):309–316. doi:10.1016/j.molcel.2006.08.019

    CAS  PubMed  Google Scholar 

  157. Tachiwana H, Miya Y, Shono N, Ohzeki JI, Osakabe A, Otake K, Larionov V, Earnshaw WC, Kimura H, Masumoto H, Kurumizaka H (2013) Nap1 regulates proper CENP-B binding to nucleosomes. Nucleic Acids Res. doi:10.1093/nar/gks1464

    Google Scholar 

  158. Shah N, Sukumar S (2010) The Hox genes and their roles in oncogenesis. Nat Rev Cancer 10(5):361–371. doi:10.1038/nrc2826

    CAS  PubMed  Google Scholar 

  159. Manuyakorn A, Paulus R, Farrell J, Dawson NA, Tze S, Cheung-Lau G, Hines OJ, Reber H, Seligson DB, Horvath S, Kurdistani SK, Guha C, Dawson DW (2010) Cellular histone modification patterns predict prognosis and treatment response in resectable pancreatic adenocarcinoma: results from RTOG 9704. J Clin Oncol 28(8):1358–1365. doi:10.1200/jco.2009.24.5639

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Ellinger J, Kahl P, Mertens C, Rogenhofer S, Hauser S, Hartmann W, Bastian PJ, Buttner R, Muller SC, von Ruecker A (2010) Prognostic relevance of global histone H3 lysine 4 (H3K4) methylation in renal cell carcinoma. Int J Cancer 127(10):2360–2366. doi:10.1002/ijc.25250

    CAS  PubMed  Google Scholar 

  161. Magerl C, Ellinger J, Braunschweig T, Kremmer E, Koch LK, Holler T, Buttner R, Luscher B, Gutgemann I (2010) H3K4 dimethylation in hepatocellular carcinoma is rare compared with other hepatobiliary and gastrointestinal carcinomas and correlates with expression of the methylase Ash2 and the demethylase LSD1. Hum Pathol 41(2):181–189. doi:10.1016/j.humpath.2009.08.007

    CAS  PubMed  Google Scholar 

  162. Wong CM, Wong CC, Ng YL, Au SL, Ko FC, Ng IO (2011) Transcriptional repressive H3K9 and H3K27 methylations contribute to DNMT1-mediated DNA methylation recovery. PLoS One 6(2):e16702. doi:10.1371/journal.pone.0016702

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Omura N, Goggins M (2009) Epigenetics and epigenetic alterations in pancreatic cancer. Int J Clin Exp Pathol 2(4):310–326

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Dey P, Ponnusamy MP, Deb S, Batra SK (2011) Human RNA polymerase II-association factor 1 (hPaf1/PD2) regulates histone methylation and chromatin remodeling in pancreatic cancer. PLoS One 6(10):e26926. doi:10.1371/journal.pone.0026926

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Lee SH, Kim J, Kim WH, Lee YM (2009) Hypoxic silencing of tumor suppressor RUNX3 by histone modification in gastric cancer cells. Oncogene 28(2):184–194. doi:10.1038/onc.2008.377

    CAS  PubMed  Google Scholar 

  166. Lu Y, Chu A, Turker MS, Glazer PM (2011) Hypoxia-induced epigenetic regulation and silencing of the BRCA1 promoter. Mol Cell Biol 31(16):3339–3350. doi:10.1128/mcb.01121-10

    CAS  PubMed  PubMed Central  Google Scholar 

  167. Huang Y, Stewart TM, Wu Y, Baylin SB, Marton LJ, Perkins B, Jones RJ, Woster PM, Casero RA Jr (2009) Novel oligoamine analogues inhibit lysine-specific demethylase 1 and induce reexpression of epigenetically silenced genes. Clin Cancer Res 15(23):7217–7228. doi:10.1158/1078-0432.ccr-09-1293

    CAS  PubMed  PubMed Central  Google Scholar 

  168. Sierra J, Yoshida T, Joazeiro CA, Jones KA (2006) The APC tumor suppressor counteracts beta-catenin activation and H3K4 methylation at Wnt target genes. Genes Dev 20(5):586–600. doi:10.1101/gad.1385806

    CAS  PubMed  PubMed Central  Google Scholar 

  169. Roesch A, Fukunaga-Kalabis M, Schmidt EC, Zabierowski SE, Brafford PA, Vultur A, Basu D, Gimotty P, Vogt T, Herlyn M (2010) A temporarily distinct subpopulation of slow-cycling melanoma cells is required for continuous tumor growth. Cell 141(4):583–594. doi:10.1016/j.cell.2010.04.020

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Scibetta AG, Santangelo S, Coleman J, Hall D, Chaplin T, Copier J, Catchpole S, Burchell J, Taylor-Papadimitriou J (2007) Functional analysis of the transcription repressor PLU-1/JARID1B. Mol Cell Biol 27(20):7220–7235. doi:10.1128/mcb.00274-07

    CAS  PubMed  PubMed Central  Google Scholar 

  171. Lin W, Cao J, Liu J, Beshiri ML, Fujiwara Y, Francis J, Cherniack AD, Geisen C, Blair LP, Zou MR, Shen X, Kawamori D, Liu Z, Grisanzio C, Watanabe H, Minamishima YA, Zhang Q, Kulkarni RN, Signoretti S, Rodig SJ, Bronson RT, Orkin SH, Tuck DP, Benevolenskaya EV, Meyerson M, Kaelin WG Jr, Yan Q (2011) Loss of the retinoblastoma binding protein 2 (RBP2) histone demethylase suppresses tumorigenesis in mice lacking Rb1 or Men1. Proc Natl Acad Sci USA 108(33):13379–13386. doi:10.1073/pnas.1110104108

    CAS  PubMed  PubMed Central  Google Scholar 

  172. Mancuso M, Matassa DS, Conte M, Colella G, Rana G, Fucci L, Piscopo M (2009) H3K4 histone methylation in oral squamous cell carcinoma. Acta Biochim Pol 56(3):405–410

    CAS  PubMed  Google Scholar 

  173. Yamane K, Tateishi K, Klose RJ, Fang J, Fabrizio LA, Erdjument-Bromage H, Taylor-Papadimitriou J, Tempst P, Zhang Y (2007) PLU-1 is an H3K4 demethylase involved in transcriptional repression and breast cancer cell proliferation. Mol Cell 25(6):801–812. doi:10.1016/j.molcel.2007.03.001

    CAS  PubMed  Google Scholar 

  174. Alonso A, Hasson D, Cheung F, Warburton PE (2010) A paucity of heterochromatin at functional human neocentromeres. Epigenet Chromatin 3(1):6. doi:10.1186/1756-8935-3-6

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samir Kumar Patra.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deb, M., Kar, S., Sengupta, D. et al. Chromatin dynamics: H3K4 methylation and H3 variant replacement during development and in cancer. Cell. Mol. Life Sci. 71, 3439–3463 (2014). https://doi.org/10.1007/s00018-014-1605-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-014-1605-4

Keywords

Navigation