Skip to main content
Log in

Gene–ethanol interactions underlying fetal alcohol spectrum disorders

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Fetal alcohol spectrum disorders (FASD) is an umbrella term that describes a diverse set of ethanol-induced defects. The phenotypic variation is generated by numerous factors, including timing and dosage of ethanol exposure as well as genetic background. We are beginning to learn about how the concentration, duration, and timing of ethanol exposure mediate variability within ethanol teratogenesis. However, little is known about the genetic susceptibilities in FASD. Studies of FASD animal models are beginning to implicate a number of susceptibility genes that are involved in various pathways. Here we review the current literature that focuses on the genetic predispositions in FASD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Landrigan PJ, De Garbino JP, Newman B (2006) Framing the future in light of the past: living in a chemical world. Ann N Y Acad Sci 1076:657–659

    Article  PubMed  Google Scholar 

  2. Sampson PD et al (1997) Incidence of fetal alcohol syndrome and prevalence of alcohol-related neurodevelopmental disorder. Teratology 56(5):317–326

    Article  CAS  PubMed  Google Scholar 

  3. May PA et al (2013) Approaching the prevalence of the full spectrum of fetal alcohol spectrum disorders in a South African population-based study. Alcohol Clin Exp Res 37(5):818–830

    Article  PubMed Central  PubMed  Google Scholar 

  4. Calhoun F, Warren K (2007) Fetal alcohol syndrome: historical perspectives. Neurosci Biobehav Rev 31(2):168–171

    Article  CAS  PubMed  Google Scholar 

  5. Hoyme HE et al (2005) A practical clinical approach to diagnosis of fetal alcohol spectrum disorders: clarification of the 1996 Institute of Medicine criteria. Pediatrics 115(1):39–47

    PubMed  Google Scholar 

  6. Jones KL (2011) The effects of alcohol on fetal development. Birth Defects Res C Embryo Today 93(1):3–11

    Article  CAS  PubMed  Google Scholar 

  7. Perkins A et al (2013) Alcohol exposure during development: impact on the epigenome. Int J Dev Neurosci 31(6):391–397

    Article  CAS  PubMed  Google Scholar 

  8. Chasnoff IJ (1985) Fetal alcohol syndrome in twin pregnancy. Acta Genet Med Gemellol (Roma) 34(3–4):229–232

    CAS  Google Scholar 

  9. Streissguth AP, Dehaene P (1993) Fetal alcohol syndrome in twins of alcoholic mothers: concordance of diagnosis and IQ. Am J Med Genet 47(6):857–861

    Article  CAS  PubMed  Google Scholar 

  10. Etheredge AJ et al (2005) Evaluation of two methods for assessing gene-environment interactions using data from the Danish case-control study of facial clefts. Birth Defects Res A Clin Mol Teratol 73(8):541–546

    Article  CAS  PubMed  Google Scholar 

  11. Mitchell LE et al (2001) Evaluation of two putative susceptibility loci for oral clefts in the Danish population. Am J Epidemiol 153(10):1007–1015

    Article  CAS  PubMed  Google Scholar 

  12. Romitti PA et al (1999) Candidate genes for nonsyndromic cleft lip and palate and maternal cigarette smoking and alcohol consumption: evaluation of genotype-environment interactions from a population-based case-control study of orofacial clefts. Teratology 59(1):39–50

    Article  CAS  PubMed  Google Scholar 

  13. Boehm SL 2nd et al (1997) Ethanol teratogenesis in the C57BL/6J, DBA/2J, and A/J inbred mouse strains. Alcohol 14(4):389–395

    Article  CAS  PubMed  Google Scholar 

  14. Debelak KA, Smith SM (2000) Avian genetic background modulates the neural crest apoptosis induced by ethanol exposure. Alcohol Clin Exp Res 24(3):307–314

    Article  CAS  PubMed  Google Scholar 

  15. Downing C et al (2012) Gene expression changes in C57BL/6J and DBA/2J mice following prenatal alcohol exposure. Alcohol Clin Exp Res 36(9):1519–1529

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Green ML (2007) Reprogramming of genetic networks during initiation of the fetal alcohol syndrome. Dev Dyn 236(2):613–631

    Article  CAS  PubMed  Google Scholar 

  17. Deehan GA Jr et al (2013) Elucidating the biological basis for the reinforcing actions of alcohol in the mesolimbic dopamine system: the role of active metabolites of alcohol. Front Behav Neurosci 7:104

    Article  PubMed Central  PubMed  Google Scholar 

  18. Das UG et al (2004) Alcohol dehydrogenase 2*3 affects alterations in offspring facial morphology associated with maternal ethanol intake in pregnancy. Alcohol Clin Exp Res 28(10):1598–1606

    Article  CAS  PubMed  Google Scholar 

  19. Green RF, Stoler JM (2007) Alcohol dehydrogenase 1B genotype and fetal alcohol syndrome: a HuGE minireview. Am J Obstet Gynecol 197(1):12–25

    Article  CAS  PubMed  Google Scholar 

  20. Jacobson SW et al (2006) Protective effects of the alcohol dehydrogenase-ADH1B allele in children exposed to alcohol during pregnancy. J Pediatr 148(1):30–37

    Article  CAS  PubMed  Google Scholar 

  21. May PA et al (2007) The epidemiology of fetal alcohol syndrome and partial FAS in a South African community. Drug Alcohol Depend 88(2–3):259–271

    Article  PubMed Central  PubMed  Google Scholar 

  22. McCarver DG et al (1997) Alcohol dehydrogenase-2*3 allele protects against alcohol-related birth defects among African Americans. J Pharmacol Exp Ther 283(3):1095–1101

    CAS  PubMed  Google Scholar 

  23. Viljoen DL et al (2001) Alcohol dehydrogenase-2*2 allele is associated with decreased prevalence of fetal alcohol syndrome in the mixed-ancestry population of the Western Cape Province, South Africa. Alcohol Clin Exp Res 25(12):1719–1722

    Article  CAS  PubMed  Google Scholar 

  24. Wentzel P, Eriksson UJ (2006) Ethanol-induced fetal dysmorphogenesis in the mouse is diminished by high antioxidative capacity of the mother. Toxicol Sci 92(2):416–422

    Article  CAS  PubMed  Google Scholar 

  25. Chernoff GF (1980) The fetal alcohol syndrome in mice: maternal variables. Teratology 22(1):71–75

    Article  CAS  PubMed  Google Scholar 

  26. Gilliam DM, Irtenkauf KT (1990) Maternal genetic effects on ethanol teratogenesis and dominance of relative embryonic resistance to malformations. Alcohol Clin Exp Res 14(4):539–545

    Article  CAS  PubMed  Google Scholar 

  27. Dong J, Sulik KK, Chen SY (2009) The role of NOX enzymes in ethanol-induced oxidative stress and apoptosis in mouse embryos. Toxicol Lett 193(1):94–100

    PubMed Central  PubMed  Google Scholar 

  28. Ramachandran V et al (2001) In utero ethanol exposure causes mitochondrial dysfunction, which can result in apoptotic cell death in fetal brain: a potential role for 4-hydroxynonenal. Alcohol Clin Exp Res 25(6):862–871

    Article  CAS  PubMed  Google Scholar 

  29. Ramachandran V et al (2003) Ethanol-induced oxidative stress precedes mitochondrially mediated apoptotic death of cultured fetal cortical neurons. J Neurosci Res 74(4):577–588

    Article  CAS  PubMed  Google Scholar 

  30. Mirchandani KD, D’Andrea AD (2006) The Fanconi anemia/BRCA pathway: a coordinator of cross-link repair. Exp Cell Res 312(14):2647–2653

    Article  CAS  PubMed  Google Scholar 

  31. Langevin F et al (2011) Fancd2 counteracts the toxic effects of naturally produced aldehydes in mice. Nature 475(7354):53–58

    Article  CAS  PubMed  Google Scholar 

  32. Stone DM et al (1996) The tumour-suppressor gene Patched encodes a candidate receptor for Sonic Hedgehog. Nature 384(6605):129–134

    Article  CAS  PubMed  Google Scholar 

  33. Mann RK, Beachy PA (2000) Cholesterol modification of proteins. Biochim Biophys Acta 1529(1–3):188–202

    Article  CAS  PubMed  Google Scholar 

  34. Porter JA, Young KE, Beachy PA (1996) Cholesterol modification of hedgehog signaling proteins in animal development. Science 274(5285):255–259

    Article  CAS  PubMed  Google Scholar 

  35. Mao H, Diehl AM, Li YX (2009) Sonic hedgehog ligand partners with caveolin-1 for intracellular transport. Lab Investig 89(3):290–300

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Ruiz i Altaba A, Palma V, Dahmane N (2002) Hedgehog-Gli signalling and the growth of the brain. Nat Rev Neurosci 3(1):24–33

    Article  CAS  PubMed  Google Scholar 

  37. Chiang C et al (1996) Cyclopia and defective axial patterning in mice lacking Sonic hedgehog gene function. Nature 383(6599):407–413

    Article  CAS  PubMed  Google Scholar 

  38. Cordero D et al (2004) Temporal perturbations in sonic hedgehog signaling elicit the spectrum of holoprosencephaly phenotypes. J Clin Investig 114(4):485–494

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Eberhart JK et al (2006) Early Hedgehog signaling from neural to oral epithelium organizes anterior craniofacial development. Development 133(6):1069–1077

    Article  CAS  PubMed  Google Scholar 

  40. Jeong J et al (2004) Hedgehog signaling in the neural crest cells regulates the patterning and growth of facial primordia. Genes Dev 18(8):937–951

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Pan A et al (2013) A review of hedgehog signaling in cranial bone development. Front Physiol 4:61

    Article  PubMed Central  PubMed  Google Scholar 

  42. Roessler E, Muenke M (2010) The molecular genetics of holoprosencephaly. Am J Med Genet C Semin Med Genet 154C(1):52–61

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Wada N et al (2005) Hedgehog signaling is required for cranial neural crest morphogenesis and chondrogenesis at the midline in the zebrafish skull. Development 132(17):3977–3988

    Article  CAS  PubMed  Google Scholar 

  44. Johnson CY, Rasmussen SA (2010) Non-genetic risk factors for holoprosencephaly. Am J Med Genet C Semin Med Genet 154C(1):73–85

    Article  PubMed  Google Scholar 

  45. Ahlgren SC, Thakur V, Bronner-Fraser M (2002) Sonic hedgehog rescues cranial neural crest from cell death induced by ethanol exposure. Proc Natl Acad Sci USA 99(16):10476–10481

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Brennan D, Giles S (2013) Sonic hedgehog expression is disrupted following in ovo ethanol exposure during early chick eye development. Reprod Toxicol 41:49–56

    Article  CAS  PubMed  Google Scholar 

  47. Aoto K et al (2008) Fetal ethanol exposure activates protein kinase A and impairs Shh expression in prechordal mesendoderm cells in the pathogenesis of holoprosencephaly. Birth Defects Res A Clin Mol Teratol 82(4):224–231

    Article  CAS  PubMed  Google Scholar 

  48. Li YX et al (2007) Fetal alcohol exposure impairs Hedgehog cholesterol modification and signaling. Lab Investig 87(3):231–240

    Article  CAS  PubMed  Google Scholar 

  49. Loucks EJ, Ahlgren SC (2009) Deciphering the role of Shh signaling in axial defects produced by ethanol exposure. Birth Defects Res A Clin Mol Teratol 85(6):556–567

    Article  CAS  PubMed  Google Scholar 

  50. Zhang C et al (2011) Agrin function associated with ocular development is a target of ethanol exposure in embryonic zebrafish. Birth Defects Res A Clin Mol Teratol 91(3):129–141

    Article  CAS  PubMed  Google Scholar 

  51. Zhang C, Ojiaku P, Cole GJ (2012) Forebrain and hindbrain development in zebrafish is sensitive to ethanol exposure involving agrin, Fgf, and sonic hedgehog function. Birth Defects Res A Clin Mol Teratol 97(1):8–27

    Article  PubMed  Google Scholar 

  52. Polley A, Vemparala S (2012) Partitioning of ethanol in multi-component membranes: effects on membrane structure. Chem Phys Lipids 166:1–11

    Article  PubMed  Google Scholar 

  53. Ehrlich D, Pirchl M, Humpel C (2012) Effects of long-term moderate ethanol and cholesterol on cognition, cholinergic neurons, inflammation, and vascular impairment in rats. Neuroscience 205:154–166

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Hong M, Krauss RS (2012) Cdon mutation and fetal ethanol exposure synergize to produce midline signaling defects and holoprosencephaly spectrum disorders in mice. PLoS Genet 8(10):e1002999

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. de la Monte SM, Wands JR (2010) Role of central nervous system insulin resistance in fetal alcohol spectrum disorders. J Popul Ther Clin Pharmacol 17(3):e390–e404

    PubMed Central  PubMed  Google Scholar 

  56. Hsuan JJ, Tan SH (1997) Growth factor-dependent phosphoinositide signalling. Int J Biochem Cell Biol 29(3):415–435

    Article  CAS  PubMed  Google Scholar 

  57. Tallquist M, Kazlauskas A (2004) PDGF signaling in cells and mice. Cytokine Growth Factor Rev 15(4):205–213

    Article  CAS  PubMed  Google Scholar 

  58. McGough NN et al (2009) Insulin-like growth factor-I mitigates motor coordination deficits associated with neonatal alcohol exposure in rats. Neurotoxicol Teratol 31(1):40–48

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Siegenthaler JA, Miller MW (2005) Ethanol disrupts cell cycle regulation in developing rat cortex interaction with transforming growth factor beta1. J Neurochem 95(3):902–912

    Article  CAS  PubMed  Google Scholar 

  60. Downward J (2004) PI 3-kinase, Akt and cell survival. Semin Cell Dev Biol 15(2):177–182

    Article  CAS  PubMed  Google Scholar 

  61. Manning BD, Cantley LC (2007) AKT/PKB signaling: navigating downstream. Cell 129(7):1261–1274

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  62. Dobashi Y et al (2011) Mammalian target of rapamycin: a central node of complex signaling cascades. Int J Clin Exp Pathol 4(5):476–495

    CAS  PubMed Central  PubMed  Google Scholar 

  63. Cai N et al (2013) PI3K/AKT/mTOR signaling pathway inhibitors in proliferation of retinal pigment epithelial cells. Int J Ophthalmol 5(6):675–680

    Google Scholar 

  64. Kim SM et al (2013) Brassinin induces apoptosis in PC-3 human prostate cancer cells through the suppression of PI3K/Akt/mTOR/S6K1 signaling cascades. Phytother Res

  65. de la Monte SM et al (2000) Partial rescue of ethanol-induced neuronal apoptosis by growth factor activation of phosphoinositol-3-kinase. Alcohol Clin Exp Res 24(5):716–726

    Article  PubMed  Google Scholar 

  66. de la Monte SM, Wands JR (2002) Chronic gestational exposure to ethanol impairs insulin-stimulated survival and mitochondrial function in cerebellar neurons. Cell Mol Life Sci 59(5):882–893

    Article  PubMed  Google Scholar 

  67. Hong-Brown LQ et al (2006) Alcohol and indinavir adversely affect protein synthesis and phosphorylation of MAPK and mTOR signaling pathways in C2C12 myocytes. Alcohol Clin Exp Res 30(8):1297–1307

    Article  CAS  PubMed  Google Scholar 

  68. Vary TC, Deiter G, Lantry R (2008) Chronic alcohol feeding impairs mTOR(Ser 2448) phosphorylation in rat hearts. Alcohol Clin Exp Res 32(1):43–51

    Article  CAS  PubMed  Google Scholar 

  69. Xu J et al (2003) Ethanol impairs insulin-stimulated neuronal survival in the developing brain: role of PTEN phosphatase. J Biol Chem 278(29):26929–26937

    Article  CAS  PubMed  Google Scholar 

  70. Jegou S et al (2013) Prenatal alcohol exposure affects vasculature development in the neonatal brain. Ann Neurol 72(6):952–960

    Article  Google Scholar 

  71. McCarthy N et al (2013) Pdgfra protects against ethanol-induced craniofacial defects in a zebrafish model of FASD. Development 140(15):3254–3265

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  72. Eberhart JK et al (2008) MicroRNA Mirn140 modulates Pdgf signaling during palatogenesis. Nat Genet 40(3):290–298

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  73. Soriano P (1997) The PDGF alpha receptor is required for neural crest cell development and for normal patterning of the somites. Development 124(14):2691–2700

    CAS  PubMed  Google Scholar 

  74. Tallquist MD, Soriano P (2003) Cell autonomous requirement for PDGFRalpha in populations of cranial and cardiac neural crest cells. Development 130(3):507–518

    Article  CAS  PubMed  Google Scholar 

  75. McClure KD, French RL, Heberlein U (2011) A Drosophila model for fetal alcohol syndrome disorders: role for the insulin pathway. Dis Model Mech 4(3):335–346

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  76. de la Monte SM et al (1999) Differential effects of ethanol on insulin-signaling through the insulin receptor substrate-1. Alcohol Clin Exp Res 23(5):770–777

    Article  PubMed  Google Scholar 

  77. Sasaki Y et al (1994) Influence of ethanol on insulin receptor substrate-1-mediated signal transduction during rat liver regeneration. Alcohol Alcohol Suppl 29(1):99–106

    CAS  PubMed  Google Scholar 

  78. Feng MJ, Yan SE, Yan QS (2005) Effects of prenatal alcohol exposure on brain-derived neurotrophic factor and its receptor tyrosine kinase B in offspring. Brain Res 1042(2):125–132

    Article  CAS  PubMed  Google Scholar 

  79. Swartz ME, Ben Wells M, Griffin M, McCarthy N, Ben Lovely C, McGurk P, Rozacky J, Eberhart JK (2013) A screen of zebrafish mutants identifies ethanol-sensitive genetic loci. Alcohol Clin Exp Res

  80. Kettleborough RN et al (2013) A systematic genome-wide analysis of zebrafish protein-coding gene function. Nature 496(7446):494–497

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  81. Finer LB, Henshaw SK (2006) Disparities in rates of unintended pregnancy in the United States, 1994 and 2001. Perspect Sex Reprod Health 38(2):90–96

    Article  PubMed  Google Scholar 

  82. Moos MK, Bartholomew NE, Lohr KN (2003) Counseling in the clinical setting to prevent unintended pregnancy: an evidence-based research agenda. Contraception 67(2):115–132

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johann K. Eberhart.

Rights and permissions

Reprints and permissions

About this article

Cite this article

McCarthy, N., Eberhart, J.K. Gene–ethanol interactions underlying fetal alcohol spectrum disorders. Cell. Mol. Life Sci. 71, 2699–2706 (2014). https://doi.org/10.1007/s00018-014-1578-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-014-1578-3

Keywords

Navigation