Skip to main content
Log in

Proteasome inhibition induces DNA damage and reorganizes nuclear architecture and protein synthesis machinery in sensory ganglion neurons

  • Research Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Bortezomib is a reversible proteasome inhibitor used as an anticancer drug. However, its clinical use is limited since it causes peripheral neurotoxicity. We have used Sprague–Dawley rats as an animal model to investigate the cellular mechanisms affected by both short-term and chronic bortezomib treatments in sensory ganglia neurons. Proteasome inhibition induces dose-dependent alterations in the architecture, positioning, shape and polarity of the neuronal nucleus. It also produces DNA damage without affecting neuronal survival, and severe disruption of the protein synthesis machinery at the central cytoplasm accompanied by decreased expression of the brain-derived neurotrophic factor. As a compensatory or adaptive survival response against proteotoxic stress caused by bortezomib treatment, sensory neurons preserve basal levels of transcriptional activity, up-regulate the expression of proteasome subunit genes, and generate a new cytoplasmic perinuclear domain for protein synthesis. We propose that proteasome activity is crucial for controlling nuclear architecture, DNA repair and the organization of the protein synthesis machinery in sensory neurons. These neurons are primary targets of bortezomib neurotoxicity, for which reason their dysfunction may contribute to the pathogenesis of the bortezomib-induced peripheral neuropathy in treated patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Finley D (2009) Recognition and processing of ubiquitin-protein conjugates by the proteasome. Annu Rev Biochem 78:477–513

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  2. Adams J (2004) The development of proteasome inhibitors as anticancer drugs. Cancer Cell 5:417–421

    Article  PubMed  CAS  Google Scholar 

  3. Schwartz AL, Ciechanover A (2009) Targeting protein for destruction by the ubiquitin system: implications for human pathobiology. Annu Rev Pharmacol Toxicol 49:73–96

    Article  PubMed  CAS  Google Scholar 

  4. Steffen J, Seeger M, Koch A, Krüger E (2010) Proteasomal degradation is transcriptionally controlled by TCF11 via an ERAD-dependent feedback loop. Mol Cell 40:147–158

    Article  PubMed  CAS  Google Scholar 

  5. Rubinsztein DC (2006) The roles of intracellular protein-degradation pathways in neurodegeneration. Nature 443:780–786

    Article  PubMed  CAS  Google Scholar 

  6. Ding Q, Cecarini V, Keller JN (2006) Interplay between protein synthesis and degradation in the CNS: physiological and pathological implications. Trends Neurosci 30:31–36

    Article  PubMed  CAS  Google Scholar 

  7. Lehman NL (2009) The ubiquitin proteasome system in neuropathology. Acta Neuropathol 118:329–347

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  8. Bennett EJ, Bence NF, Jayakumar R, Kopito RR (2005) Global impairment of the ubiquitin-proteasome system by nuclear or cytoplasmic protein aggregates precedes inclusion body formation. Mol Cell 17:351–365

    Article  PubMed  CAS  Google Scholar 

  9. Bedford L, Hay D, Devoy A, Paine S, Powe DG, Seth R, Gray T, Topham I, Fone K, Rezvani N, Mee M, Soane T, Layfield R, Sheppard PW, Ebendal T, Usoskin D, Lowe J, Mayer RJ (2008) Depletion of 26S proteasomes in mouse brain neurons causes neurodegeneration and Lewy-like inclusions resembling human pale bodies. J Neurosci 28:8189–8198

    Article  PubMed  CAS  Google Scholar 

  10. Misteli T, Spector DL (2011) The Nucleus. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  11. Mekhail K, Moazed D (2010) The nuclear envelope in genome organization, expression and stability. Nat Rev Mol Cell Biol 11:317–328

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  12. Oberdoerffer P, Sinclair DA (2007) The role of nuclear architecture in genomic instability and ageing. Nat Rev Mol Cell Biol 8:692–702

    Article  PubMed  CAS  Google Scholar 

  13. Dauer WT, Worman HJ (2009) The nuclear envelope as a signaling node in development and disease. Dev Cell 17:626–638

    Article  PubMed  CAS  Google Scholar 

  14. von Mikecz A (2006) The nuclear ubiquitin-proteasome system. J Cell Sci 119:1977–1984

    Article  CAS  Google Scholar 

  15. Lafarga M, Berciano MT, Pena E, Mayo I, Castano JG, Bohmann D, Rodrigues JP, Tavanez JP, Carmo-Fonseca M (2002) Clastosome: a subtype of nuclear body enriched in 19S and 20S proteasomes, ubiquitin, and protein substrates of proteasome. Mol Biol Cell 13:2771–2782

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  16. Desterro JM, Rodriguez MS, Hay RT (2000) Regulation of transcription factors by protein degradation. Cell Mol Life Sci 57:1207–1219

    Article  PubMed  CAS  Google Scholar 

  17. Rockel TD, Stuhlmann D, von Mikecz A (2005) Proteasomes degrade proteins in focal subdomains of the human cell nucleus. J Cell Sci 118:5231–5242

    Article  PubMed  CAS  Google Scholar 

  18. Richardson PG, Mitsiades C, Hideshima T, Anderson KC (2006) Bortezomib: proteasome inhibition as an effective anticancer therapy. Annu Rev Med 57:33–47

    Article  PubMed  CAS  Google Scholar 

  19. McConkey DJ, Zhu K (2008) Mechanisms of proteasome inhibitor action and resistance in cancer. Drug Resist Updates 11:164–179

    Article  CAS  Google Scholar 

  20. Cavaletti G, Gilardini A, Canta A, Rigamonti L, Rodriguez-Menendez V, Ceresa C, Marmiroli P, Bossi M, Oggioni N, D′Incalci M, De Coster R (2007) Bortezomib-induced peripheral neurotoxicity: a neurophysiological and pathological study in the rat. Exp Neurol 204:317–325

    Article  PubMed  CAS  Google Scholar 

  21. Casafont I, Berciano MT, Lafarga M (2010) Bortezomib induces the formation of nuclear poly(A) RNA granules enriched in Sam68 and PABPN1 in sensory ganglia neurons. Neurotox Res 17:167–178

    Article  PubMed  CAS  Google Scholar 

  22. Bruna J, Urdina E, Ale A, Vilches JJ, Vynckier A, Monbaliu J, Silverman L, Navarro X (2010) Neurophysiological, histological and immunohistochemical characterization of bortezomib-induced neurophathy in mice. Exp Neurol 223:599–608

    Article  PubMed  CAS  Google Scholar 

  23. Carozzi VA, Canta A, Oggioni N, Sala B, Chiorazzi A, Meregalli C, Bossi M, Marmiroli P, Cavaletti G (2010) Neurophysiological and neuropathological characterization of new murine models of chemotherapy-induced chronic peripheral neuropathies. Exp Neurol 226:301–309

    Article  PubMed  CAS  Google Scholar 

  24. Argyriou AA, Bruna J, Marmiroli P, Cavaletti G (2012) Chemotherapy-induced peripheral neurotoxicity (CIPN): an update. Crit Rev Oncol Hematol 8:51–77

    Article  Google Scholar 

  25. Pena E, Berciano MT, Fernandez R, Ojeda JL, Lafarga M (2001) Neuronal body size correlates with the number of nucleoli and Cajal bodies, and with the organization of the splicing machinery in rat trigeminal ganglion neurons. J Comp Neurol 430:250–263

    Article  PubMed  CAS  Google Scholar 

  26. Casafont I, Navascues J, Pena E, Lafarga M, Berciano MT (2006) Nuclear organization and dynamics of transcription sites in rat sensory ganglia neurons detected by incorporation of 5′-fluorouridine into nascent RNA. Neuroscience 140:453–462

    Article  PubMed  CAS  Google Scholar 

  27. Binder DK, Scharfman HE (2004) Brain-derived neurotrophic factor. Growth Factor 22:123–131

    Article  CAS  Google Scholar 

  28. Holcomb PS, Deerinck T, Ellisman MH, Spirou GA (2013) Construction of a polarized neuron. J Physiol 591:3145–3150

    Article  PubMed  CAS  Google Scholar 

  29. Jacquemont C, Taniguchi T (2007) Proteasome function is required for DNA damage response and fanconi anemia pathway activation. Cancer Res 67:7395–7405

    Article  PubMed  CAS  Google Scholar 

  30. Sakasai R, Teraoka H, Tibbetts RS (2010) Proteasome inhibition suppresses DNA-dependent protein kinase activation caused by camptothecin. DNA Repair (Amst) 9:76–82

    Article  CAS  Google Scholar 

  31. Fernandez-Capetillo O, Lee A, Nussenzweig M, Nussenzweig A (2004) H2AX: the histone guardian of genome. DNA Repair 3:959–967

    Article  PubMed  CAS  Google Scholar 

  32. Noon AT, Goodarzi AA (2011) 53BP1-mediated DNA double strand break repair: insert bad pun here. DNA Repair 10:1071–1076

    Article  PubMed  CAS  Google Scholar 

  33. Meiners S, Heyken D, Weller A, Ludwig A, Stang K, Kloetzel PM, Krüger E (2003) Inhibition of proteasome activity induces concerted expression of proteasome genes and de novo formation of mammalian proteasomes. J Biol Chem 278:21517–21525

    Article  PubMed  CAS  Google Scholar 

  34. Kühn U, Wahle E (2004) Structure and function of poly(A) binding proteins. Biochim Biophys Acta 1678:67–84

    Article  PubMed  CAS  Google Scholar 

  35. Moreau P, Pylypenko H, Grosicki S, Karamanesht I, Leleu X, Grishunina M, Rekhtman G, Masliak Z, Robak T, Shubina A, Arnulf B, Kropff M, Cavet J, Esseltine DL, Feng H, Girgis S, van de Velde H, Deraedt W, Harousseau JL (2011) Subcutaneous versus intravenous administration of bortezomib in patients with relapsed multiple myeloma: a randomized, phase 3, non-inferiority study. Lancet Oncol 12:431–440

    Article  PubMed  Google Scholar 

  36. Meregalli C, Canta A, Carozzi VA, Chiorazzi A, Oggioni N, Gilardini A, Ceresa C, Avezza F, Crippa L, Marmiroli P, Cavaletti G (2010) Bortezomib-induced painful neuropathy in rats: a behavioral, neurophysiological and pathological study in rats. Eur J Pain 14:343–350

    Article  PubMed  CAS  Google Scholar 

  37. Casafont I, Palanca A, Lafarga V, Berciano MT, Lafarga M (2011) Effect of ionizing radiation in sensory ganglion neurons: organization and dynamics of nuclear compartments of DNA damage/repair and their relationship with transcription and cell cycle. Acta Neuropathol 122:481–493

    Article  PubMed  CAS  Google Scholar 

  38. Kruhlak M, Crouch EE, Orlov M, Montaño C, Gorski SA, Nussenzweig A, Misteli T, Phair RD, Casellas R (2007) The ATM repair pathway inhibits RNA polymerase I transcription in response to chromosome breaks. Nature 447:730–734

    Article  PubMed  CAS  Google Scholar 

  39. Martin LJ (2008) DNA damage and repair: relevance to mechanisms of neurodegeneration. J Neuropathol Exp Neurol 67:377–387

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  40. Baltanas FC, Casafont I, Lafarga V, Weruaga E, Alonso JR, Berciano MT, Lafarga M (2011) Purkinje cell degeneration in pcd mice reveals large scale chromatin reorganization and gene silencing linked to defective DNA repair. J Biol Chem 286:28287–28302

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  41. Feng R, Oton A, Mapara MY, Anderson G, Belani C, Lentzsch S (2007) The histone deacetylase inhibitor, PXD101, potentiates bortezomib-induced anti-multiple myeloma effect by induction of oxidative stress and DNA damage. Br J Haematol 139:385–397

    Article  PubMed  CAS  Google Scholar 

  42. Lieberman AR (1971) The axon reaction: a review of the principal features of perikaryal responses to axon injury. Int Rev Neurobiol 14:49–124

    Article  PubMed  CAS  Google Scholar 

  43. De Nicola AF, Labombarda F, Deniselle MC, Gonzalez SL, Garay L, Meyer M, Gargiulo G, Guennoun R, Schumacher M (2009) Progesterone neuroprotection in traumatic CNS injury and motoneuron degeneration. Front Neuroendocrinol 30:173–187

    Article  PubMed  CAS  Google Scholar 

  44. Tapia O, Bengoechea R, Palanca A, Arteaga R, Val-Bernal JF, Tizzano EF, Berciano MT, Lafarga M (2012) Reorganization of Cajal bodies and nucleolar targeting of coilin in motor neurons of type I spinal muscular atrophy. Histochem Cell Biol 137:657–667

    Article  CAS  Google Scholar 

  45. Seo H, Sonntag K-C, Isacson O (2004) Generalized brain and skin proteasome inhibition in Huntington’s disease. Ann Neurol 56:319–328

    Article  PubMed  CAS  Google Scholar 

  46. Burke B, Roux KJ (2009) Nuclei take a position: managing nuclear location. Dev Cell 17:587–597

    Article  PubMed  CAS  Google Scholar 

  47. Burke B, Stewart CL (2013) The nuclear lamins: flexibility in function. Nat Rev Mol Cell Biol 14:13–24

    Article  PubMed  CAS  Google Scholar 

  48. Lafarga M, Berciano MT, Martinez-Guijarro FJ, Andres MA, Mellström B, Lopez-Garcia C, Naranjo JR (1992) Fos-like expression and nuclear size in osmotically stimulated supraoptic nucleus neurons. Neuroscience 50:867–875

    Article  PubMed  CAS  Google Scholar 

  49. Wittmann M, Queisser G, Eder A, Wiegert JS, Bengtson CP, Hellwig A, Wittum G, Bading H (2009) Synaptic activity induces dramatic changes in the geometry of the cell nucleus: interplay between nuclear structure, histone H3 phosphorylation, and nuclear calcium signaling. J Neurosci 29:14687–14700

    Article  PubMed  CAS  Google Scholar 

  50. Akhtar A, Gasser SM (2007) The nuclear envelope and transcriptional control. Nat Rev Genet 8:507–517

    Article  PubMed  CAS  Google Scholar 

  51. Palay SL, Chan-Palay V (1974) The cerebellar cortex. Cytology and organization. Springer, New York

    Book  Google Scholar 

  52. Imai S, Kitano H (1998) Heterochromatin islands and their dynamic reorganization: a hypothesis for three distinctive features of cellular aging. Exp Gerontol 33:555–570

    Article  PubMed  CAS  Google Scholar 

  53. Gavilán MP, Pintado C, Gavilán E, García-Cuervo LM, Castaño A, Ríos RM, Ruano D (2012) Age-related differences in the dynamics of hippocampal proteasome recovery. J Neurochem 123:635–644

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Raquel García-Ceballos and María Ruiz Soto for technical assistance. This work was supported by the following grants: “Dirección General de Investigación” of Spain (BFU2011-23983), and “Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED; CB06/05/0037)” from Spain.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel Lafarga.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Palanca, A., Casafont, I., Berciano, M.T. et al. Proteasome inhibition induces DNA damage and reorganizes nuclear architecture and protein synthesis machinery in sensory ganglion neurons. Cell. Mol. Life Sci. 71, 1961–1975 (2014). https://doi.org/10.1007/s00018-013-1474-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-013-1474-2

Keywords

Navigation