Skip to main content

Advertisement

Log in

Deconvoluting the ontogeny of hematopoietic stem cells

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Two different models describe the development of definitive hematopoiesis and hematopoietic stem cells (HSCs). In one of these, the visceral yolk sac serves as a starting point of relatively lengthy developmental process culminating in the fetal liver hematopoiesis. In another, the origin of adult hematopoiesis is split between the yolk sac and the dorsal aorta, which has a peculiar capacity to generate definitive HSCs. Despite a large amount of experimental data consistent with the latter view, it becomes increasingly unsustainable in the light of recent cell tracing studies. Moreover, analysis of the published studies supporting the aorta-centered version uncovers significant caveats in standard experimental approach and argumentation. As a result, the theory cannot offer feasible cellular mechanisms of the HSC emergence. This review summarizes key efforts to discern the developmental pathway of the adult-type HSCs and attempts to put forward a hypothesis on the inflammatory mechanisms of hematopoietic ontogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Medvinsky A, Rybtsov S, Taoudi S (2011) Embryonic origin of the adult hematopoietic system: advances and questions. Development 138:1017–1031

    CAS  PubMed  Google Scholar 

  2. Lensch MW, Daley GQ (2004) Origins of mammalian hematopoiesis: in vivo paradigms and in vitro models. Curr Top Dev Biol 60:127–196

    CAS  PubMed  Google Scholar 

  3. Moore MAS, Metcalf D (1970) Ontogeny of the haemopoietic system: yolk sac origin of in vivo and in vitro colony-forming cells in the developing mouse embryo. Br J Haematol 18:279–296

    CAS  PubMed  Google Scholar 

  4. Metcalf D, Moore MAS (1971) Haemopoietic cells: North-Holland research monographs. Front Biol 24:130

    Google Scholar 

  5. Moore MAS, Owen JJT (1967) Stem-cell migration in developing myeloid and lymphoid systems. Lancet 2:658–659

    Google Scholar 

  6. Müller AM, Medvinsky AL, Strouboulis J, Grosveld F, Dzierzak E (1994) Development of hematopoietic stem cell activity in the mouse embryo. Immunity 1:291–301

    PubMed  Google Scholar 

  7. Chen MJ, Li Y, De Obaldia ME, Yang Q, Yzaguirre AD, Yamada-Inagawa T, Vink CS, Bhandoola A, Dzierzak E, Speck NA (2011) Erythroid/myeloid progenitors and hematopoietic stem cells originate from distinct populations of endothelial cells. Cell Stem Cell 9:541–552

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Fitch SR, Kimber GM, Wilson NK, Parker A, Mirshekar-Syahkal B, Göttgens B, Medvinsky A, Dzierzak E, Ottersbach K (2012) Signalling from the sympathetic nervous system regulates hematopoietic stem cell emergence during embryogenesis. Cell Stem Cell 11:554–566

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Li Z, Lan Y, He W, Chen D, Wang J, Zhou F, Wang Y, Sun H, Chen X, Xu C, Li S, Pang Y, Zhang G, Yang L, Zhu L, Fan M, Shang A, Ju Z, Luo L, Ding Y, Guo W, Yuan W, Yang X, Liu B (2012) Mouse embryonic head as a site for hematopoietic stem cell development. Cell Stem Cell 11:663–675

    CAS  PubMed  Google Scholar 

  10. Medvinsky A, Dzierzak E (1996) Definitive hematopoiesis is autonomously initiated by the AGM region. Cell 86:897–906

    CAS  PubMed  Google Scholar 

  11. de Bruijn M, Speck NA, Peeters MC, Dzierzak E (2000) Definitive hematopoietic stem cells first develop within the major arterial regions of the mouse embryo. EMBO J 19:2465–2474

    PubMed  Google Scholar 

  12. Gekas C, Dieterlen-Lièvre F, Orkin SH, Mikkola HKA (2005) The placenta is a niche for hematopoietic stem cells. Dev Cell 8:365–375

    CAS  PubMed  Google Scholar 

  13. Ottersbach K, Dzierzak E (2005) The murine placenta contains hematopoietic stem cells within the vascular labyrinth region. Dev Cell 8:377–387

    CAS  PubMed  Google Scholar 

  14. Alberts B, Bray D, Lewis J, Raff M, Roberts K, Watson JD (1994) Cell diversification in the early animal embryo. In: molecular biology of the cell, 3rd edn. Garland Science, New York

  15. Zernicka-Goetz M (2005) Cleavage pattern and emerging asymmetry of the mouse embryo. Nat Rev Mol Cell Biol 6:919–928

    CAS  PubMed  Google Scholar 

  16. Nichols J, Smith A (2009) Naive and primed pluripotent states. Cell Stem Cell 4:487–492

    CAS  PubMed  Google Scholar 

  17. Belaoussoff M, Farrington SM, Baron MH (1998) Hematopoietic induction and respecification of A-P identity by visceral endoderm signaling in the mouse embryo. Development 125:5009–5018

    CAS  PubMed  Google Scholar 

  18. Dyer MA, Farrington SM, Mohn D, Munday JR, Baron MH (2001) Indian hedgehog activates hematopoiesis and vasculogenesis and can respecify prospective neuroectodermal cell fate in the mouse embryo. Development 128:1717–1730

    CAS  PubMed  Google Scholar 

  19. Murakami Y, Hirata H, Miyamoto Y, Nagahashi A, Sawa Y, Jakt M, Asahara T, Kawamata S (2007) Isolation of cardiac cells from E8.5 yolk sac by ALCAM (CD166) expression. Mech Dev 124:830–839

    CAS  PubMed  Google Scholar 

  20. Van Handel B, Montel-Hagen A, Sasidharan R, Nakano H, Ferrari R, Boogerd CJ, Schredelseker J, Wang Y, Hunter S, Org T, Zhou J, Li X, Pellegrini M, Chen J-N, Orkin SH, Kurdistani SK, Evans SM, Nakano A, Mikkola HKA (2012) Scl represses cardiomyogenesis in prospective hemogenic endothelium and endocardium. Cell 150:590–605

    PubMed  PubMed Central  Google Scholar 

  21. Morgan HD, Santos F, Green K, Dean W, Reik W (2005) Epigenetic reprogramming in mammals. Hum Mol Genet 14:R47–R58

    CAS  PubMed  Google Scholar 

  22. De Angelis L, Berghella L, Coletta M, Lattanzi L, Zanchi M, Cusella-De Angelis MG, Ponzetto C, Cossu G (1999) Skeletal myogenic progenitors originating from embryonic dorsal aorta coexpress endothelial and myogenic markers and contribute to postnatal muscle growth and regeneration. J Cell Biol 147:869–877

    PubMed  Google Scholar 

  23. Tajbakhsh S, Vivarelli E, Cusella-De Angelis G, Rocancourt D, Buckingham M, Cossu G (1994) A population of myogenic cells derived from the mouse neural tube. Neuron 13:813–821

    CAS  PubMed  Google Scholar 

  24. Palis J, Robertson S, Kennedy M, Wall C, Keller G (1999) Development of erythroid and myeloid progenitors in the yolk sac and embryo proper of the mouse. Development 126:5073–5081

    CAS  PubMed  Google Scholar 

  25. Scott EW, Simon MC, Anastasi J, Singh H (1994) Requirement of transcription factor PU.1 in the development of multiple hematopoietic lineages. Science 265:1573–1577

    CAS  PubMed  Google Scholar 

  26. Scott EW, Fisher RC, Olson MC, Kehrli EW, Simon MC, Singh H (1997) PU.1 functions in a cell-autonomous manner to control the differentiation of multipotential lymphoid-myeloid progenitors. Immunity 6:437–447

    CAS  PubMed  Google Scholar 

  27. Anderson KL, Smith KA, Conners K, McKercher SR, Maki RA, Torbett BE (1998) Myeloid development is selectively disrupted in PU.1 null mice. Blood 91:3702–3710

    CAS  PubMed  Google Scholar 

  28. Fisher RC, Scott EW (1998) Role of PU.1 in hematopoiesis. Stem cells 16:25–37

    CAS  PubMed  Google Scholar 

  29. Lichanska AM, Browne CM, Henkel GW, Murphy KM, Ostrowski MC, McKercher SR, Maki RA, Hume DA (1999) Differentiation of the mononuclear phagocyte system during mouse embryogenesis: the role of transcription factor PU.1. Blood 94:127–138

    CAS  PubMed  Google Scholar 

  30. Robin C, Ottersbach K, Durand C, Peeters M, Vanes L, Tybulewicz V, Dzierzak E (2006) An unexpected role for IL-3 in the embryonic development of hematopoietic stem cells. Dev Cell 11:171–180

    CAS  PubMed  Google Scholar 

  31. Ogawa M, Nishikawa S, Ikuta K, Yamamura F, Naito M, Takahashi K, Nishikawa S-I (1988) B cell ontogeny in murine embryo studied by a culture system with the monolayer of a stromal cell clone, ST2: B cell progenitor develops first in the embryonal body rather than in the yolk sac. EMBO J 7:1337–1343

    CAS  PubMed  Google Scholar 

  32. Palacios R, Imhof BA (1993) At day 8–8.5 of mouse development the yolk sac, not the embryo proper, has lymphoid precursor potential in vivo and in vitro. Proc Natl Acad Sci USA 90:6581–6585

    CAS  PubMed  Google Scholar 

  33. Cumano A, Dieterlen-Lievre F, Godin I (1996) Lymphoid potential, probed before circulation in mouse, is restricted to caudal intraembryonic splanchnopleura. Cell 86:907–916

    CAS  PubMed  Google Scholar 

  34. Tanaka Y, Hayashi M, Kubota Y, Nagai H, Sheng G, Nishikawa S-I, Samokhvalov IM (2012) Early ontogenic origin of the hematopoietic stem cell lineage. Proc Natl Acad Sci USA 109:4515–4520

    CAS  PubMed  Google Scholar 

  35. Collins LS, Dorshkind K (1987) A stromal cell line from myeloid long-term bone marrow cultures can support myelopoiesis and B lymphopoiesis. J Immunol 138:1082–1087

    CAS  PubMed  Google Scholar 

  36. Nakano T, Kodama H, Honjo T (1994) Generation of lymphohematopoietic cells from embryonic stem cells in culture. Science 265:1098–1101

    CAS  PubMed  Google Scholar 

  37. Gofflot F, Hall M, Morriss-Kay GM (1997) Genetic patterning of the developing mouse tail at the time of posterior neuropore closure. Dev Dyn 210:431–445

    CAS  PubMed  Google Scholar 

  38. Yoshimoto M, Porayette P, Yoder MC (2008) Overcoming obstacles in the search for the site of hematopoietic stem cell emergence. Cell Stem Cell 3:583–586

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Tabata H, Nakajima K (2008) Labeling embryonic mouse central nervous system cells by in utero electroporation. Dev Growth Differ 50:507–511

    CAS  PubMed  Google Scholar 

  40. Martin CS, Moriyama A, Zon LI (2011) Hematopoietic stem cells, hematopoiesis and disease: lessons from the zebrafish model. Genome Med 3:83

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Liu F, Walmsley M, Rodaway A, Patient R (2008) Fli1 acts at the top of the transcriptional network driving blood and endothelial development. Curr Biol 18:1234–1240

    CAS  PubMed  Google Scholar 

  42. Stern CD, Downs KM (2012) The hypoblast (visceral endoderm): an evo-devo perspective. Development 139:1059–1069

    CAS  PubMed  Google Scholar 

  43. Sood R, Liu P (2012) Novel insights into the genetic controls of primitive and definitive hematopoiesis from zebrafish models. Adv Hematol 2012:830703

    PubMed  PubMed Central  Google Scholar 

  44. Palis J, Yoder MC (2001) Yolk-sac hematopoiesis: the first blood cells of mouse and man. Exp Hematol 29:927–936

    CAS  PubMed  Google Scholar 

  45. Brotherton TW, Chui DH, Gualdie J, Patterson M (1979) Hemoglobin ontogeny during normal mouse fetal development. Proc Natl Acad Sci USA 76:2853–2857

    CAS  PubMed  Google Scholar 

  46. Kaufman MH (1992) The atlas of mouse development. Academic Press, San Diego, p 128

    Google Scholar 

  47. Kingsley PD, Malik J, Fantauzzo KA, Palis J (2004) Yolk sac-derived primitive erythroblasts enucleate during mammalian embryogenesis. Blood 104:19–25

    CAS  PubMed  Google Scholar 

  48. Sabin FR (1920) Studies on the origin of blood vessels and of red corpuscles as seen in the living blastoderm of the chick during the second day of incubation. Carnegie Inst Wash Publ Contrib Embryol 9:213–262

    Google Scholar 

  49. Murray P (1932) The development in vitro of the blood of early chick embryo. Proc Royal Soc London 111:497–521

    CAS  Google Scholar 

  50. Kennedy M, Firpo M, Choi K, Wall C, Robertson S, Kabrun N, Keller G (1997) A common precursor for primitive erythropoiesis and definitive haematopoiesis. Nature 386:488–493

    CAS  PubMed  Google Scholar 

  51. Choi K, Kennedy M, Kazarov A, Papadimitriou JC, Keller G (1998) A common precursor for hematopoietic and endothelial. Development 125:725–732

    CAS  PubMed  Google Scholar 

  52. Fehling HJ, Lacaud G, Kubo A, Kennedy M, Robertson S, Keller G, Valerie K (2003) Tracking mesoderm induction and its specification to the hemangioblast during embryonic stem cell differentiation. Development 130:4217–4227

    CAS  PubMed  Google Scholar 

  53. Huber TL, Kouskoff V, Fehling HJ, Palis J, Keller G (2004) Haemangioblast commitment is initiated in the primitive streak of the mouse embryo. Nature 432:625–630

    CAS  PubMed  Google Scholar 

  54. Ema M, Faloon P, Zhang WJ, Hirashima M, Reid T, Stanford WL, Orkin S, Choi K, Rossant J (2003) Combinatorial effects of Flk1 and Tal1 on vascular and hematopoietic development in the mouse. Genes Dev 17:380–393

    CAS  PubMed  Google Scholar 

  55. Lancrin C, Sroczynska P, Stephenson C, Allen T, Kouskoff V, Lacaud G (2009) The haemangioblast generates haematopoietic cells through a haemogenic endothelium stage. Nature 457:892–895

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Ferkowicz MJ, Starr M, Xie X, Li W, Johnson SA, Shelley WC, Morrison PR, Yoder MC (2003) CD41 expression defines the onset of primitive and definitive hematopoiesis in the murine embryo. Development 130:4393–4403

    CAS  PubMed  Google Scholar 

  57. Ema M, Yokomizo T, Wakamatsu A, Terunuma T, Yamamoto M, Takahashi S (2006) Primitive erythropoiesis from mesodermal precursors expressing VE-cadherin, PECAM-1, Tie2, endoglin, and CD34 in the mouse embryo. Blood 108:4018–4024

    CAS  PubMed  Google Scholar 

  58. Ueno H, Weissman IL (2006) Clonal analysis of mouse development reveals a polyclonal origin for yolk sac blood islands. Dev Cell 11:519–533

    CAS  PubMed  Google Scholar 

  59. Samokhvalov IM, Samokhvalova NI, Nishikawa S-I (2007) Cell tracing shows the contribution of the yolk sac to adult haematopoiesis. Nature 446:1056–1061

    CAS  PubMed  Google Scholar 

  60. Ferkowicz MJ, Yoder MC (2005) Blood island formation: longstanding observations and modern interpretations. Exp Hematol 33:1041–1047

    PubMed  Google Scholar 

  61. Minasi MG, Riminucci M, De Angelis L, Borello U, Berarducci B, Innocenzi A, Caprioli A, Sirabella D, Baiocchi M, De Maria R, Boratto R, Jaffredo T, Broccoli V, Bianco P, Cossu G (2002) The meso-angioblast: a multipotent, self-renewing cell that originates from the dorsal aorta and differentiates into most mesodermal tissues. Development 129:2773–2783

    CAS  PubMed  Google Scholar 

  62. Samokhvalov IM (2012) A long way to stemness. Cell Cycle 11:2965–2966

    CAS  PubMed  Google Scholar 

  63. Pimanda JE, Ottersbach K, Knezevic K, Kinston S, Chan WYI, Wilson NK, Landry J-R, Wood AD, Kolb-Kokocinski A, Green AR, Tannahill D, Lacaud G, Kouskoff V, Göttgens B (2007) Gata2, Fli1, and Scl form a recursively wired gene-regulatory circuit during early hematopoietic development. Proc Natl Acad Sci USA 104:17692–17697

    CAS  PubMed  Google Scholar 

  64. Okuda T, Van Deursen J, Hiebert SW, Grosveld G, Downing JR (1996) AML1, the target of multiple chromosomal translocations in human leukemia, is essential for normal fetal liver hematopoiesis. Cell 84:321–330

    CAS  PubMed  Google Scholar 

  65. Takakura N, Watanabe T, Suenobu S, Yamada Y, Noda T, Ito Y, Satake M, Suda T (2000) A role for hematopoietic stem cells in promoting angiogenesis. Cell 102:199–209

    CAS  PubMed  Google Scholar 

  66. Hart A, Melet F, Grossfeld P, Chien K, Jones C, Tunnacliffe A, Favier R, Bernstein A (2000) Fli-1 is required for murine vascular and megakaryocytic development and is hemizygously deleted in patients with thrombocytopenia. Immunity 13:167–177

    CAS  PubMed  Google Scholar 

  67. Bader BL, Rayburn H, Crowley D, Hynes RO (1998) Extensive vasculogenesis, angiogenesis and organogenesis precede lethality in mice lacking all αv integrins. Cell 95:507–519

    CAS  PubMed  Google Scholar 

  68. Xia L, Ju T, Westmuckett A, An G, Ivanciu L, McDaniel JM, Lupu F, Cummings RD, McEver RP (2004) Defective angiogenesis and fatal embryonic hemorrhage in mice lacking core 1-derived O-glycans. J Cell Biol 164:451–459

    CAS  PubMed  Google Scholar 

  69. Puri MC, Rossant J, Alitalo K, Bernstein A, Partanen J (1995) The receptor tyrosine kinase TIE is required for integrity and survival of vascular endothelial cells. EMBO J 14:5884–5891

    CAS  PubMed  Google Scholar 

  70. Liakhovitskaia A, Gribi R, Stamateris E, Villain G, Jaffredo T, Wilkie R, Gilchrist D, Yang J, Ure J, Medvinsky A (2009) Restoration of Runx1 expression in the Tie2 cell compartment rescues definitive hematopoietic stem cells and extends life of Runx1 knockout animals until birth. Stem Cells 27:1616–1624

    CAS  PubMed  Google Scholar 

  71. Li Z, Chen MJ, Stacy T, Speck NA (2006) Runx1 function in hematopoiesis is required in cells that express Tek. Blood 107:106–110

    CAS  PubMed  Google Scholar 

  72. Yoder MC, Hiatt K, Mukherjee P (1997) In vivo repopulating hematopoietic stem cells are present in the murine yolk sac at day 9.0 postcoitus. Proc Natl Acad Sci USA 94:6776–6780

    CAS  PubMed  Google Scholar 

  73. Yoder MC, Hiatt K, Dutt P, Mukherjee P, Bodine DM, Orlic D (1997) Characterization of definitive lymphohematopoietic stem cells in the day 9 murine yolk sac. Immunity 7:335–344

    CAS  PubMed  Google Scholar 

  74. McGrath KE, Koniski AD, Malik J, Palis J (2003) Circulation is established in a stepwise pattern in the mammalian embryo. Blood 101:1669–1676

    CAS  PubMed  Google Scholar 

  75. Weissman I, Papaioannou V, Gardner R (1978) Fetal hematopoietic origins of the adult hematolymphoid systems. Cold Spring Harbor laboratory Press, New York

    Google Scholar 

  76. Toles JF, Chui DHK, Belbeck LW, Starr E, Barker JE (1989) Hemopoietic stem cells in murine embryonic yolk sac and peripheral blood. Proc Natl Acad Sci USA 86:7456–7459

    CAS  PubMed  Google Scholar 

  77. Lux CT, Yoshimoto M, McGrath K, Conway SJ, Palis J, Yoder MC (2008) All primitive and definitive hematopoietic progenitor cells emerging before E10 in the mouse embryo are products of the yolk sac. Blood 111:3435–3438

    CAS  PubMed  Google Scholar 

  78. Adamo L, Naveiras O, Wenzel PL, McKinney-Freeman S, Mack PJ, Gracio-Sancho J, Suchy-Dicey A, Yoshimoto M, Lensch MW, Yoder MC, Garcia-Cardena G, Daley GQ (2009) Biomechanical forces promote embryonic haematopoiesis. Nature 459:1131–1135

    CAS  PubMed  PubMed Central  Google Scholar 

  79. North TE, Goessling W, Peeters M, Li P, Ceol C, Lord AM, Weber GJ, Harris J, Cutting CC, Huang P, Dzierzak E, Zon LI (2009) Hematopoietic stem cells development is dependent on blood flow. Cell 137:736–748

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Lancrin C, Mazan M, Stefanska M, Patel R, Lichtinger M, Costa G, Vargel Ö, Wilson NK, Möröy T, Bonifer C, Göttgens B, Kouskoff V, Lacaud G (2012) GFI1 and GFI1B control the loss of endothelial identity of hemogenic endothelium during hematopoietic commitment. Blood 120:314–322

    CAS  PubMed  Google Scholar 

  81. Mukouyama Y, Chiba N, Hara T, Okada H, Ito Y, Kanamaru R, Miyajima A, Satake M, Watanabe T (2000) The AML1 transcription factor function to develop and maintain hematogenic precursor cells in the embryonic aorta-gonad-mesonephros region. Dev Biol 220:27–36

    CAS  PubMed  Google Scholar 

  82. Rhodes KE, Gekas C, Wang Y, Lux CT, Francis CS, Chan DN, Conway S, Orkin SH, Yoder MC, Mikkola HKA (2008) The emergence of hematopoietic stem cells is initiated in the placental vasculature in the absence of circulation. Cell Stem Cell 2:252–263

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Cai Z, de Bruijn M, Ma X, Dortland B, Luteijn T, Downing JR, Dzierzak E (2000) Haploinsufficiency of AML1 affects the temporal and spatial generation of hematopoietic stem cells in the mouse embryo. Immunity 13:423–431

    CAS  PubMed  Google Scholar 

  84. Yoder MC (2006) Hematopoietic regulation in the embryo. Haematol Rep 2:86–89

    Google Scholar 

  85. Moore MAS, Owen JJT (1967) Chromosome marker studies in the irradiated chick embryo. Nature 215:1081–1082

    CAS  PubMed  Google Scholar 

  86. Marks PA, Rifkind RA (1972) Protein synthesis: its control in erythropoiesis. Science 175:955–961

    CAS  PubMed  Google Scholar 

  87. Dieterlen-Lièvre F (1975) On the origin of haemopoietic stem cells in the avian embryo: an experimental approach. J Embryol Exp Morphol 33:607–619

    PubMed  Google Scholar 

  88. Lassila O, Eskola J, Toivanen P, Martin C, Dieterlen-Lievre F (1978) The origin of lymphoid stem cells studied in chick yolk sac-embryo chimaeras. Nature 272:353–354

    CAS  PubMed  Google Scholar 

  89. Dieterlen-Lièvre F, Martin C (1981) Diffuse intraembryonic hemopoiesis in normal and chimeric avian development. Dev Biol 88:180–191

    PubMed  Google Scholar 

  90. Cormier F, Dieterlen-Lièvre F (1988) The wall of the chick embryo aorta harbours M-CFC, G-CFC, GM-CFC and BFU-E. Development 102:272–285

    Google Scholar 

  91. Dzierzak E, Speck NA (2008) Of lineage and legacy: the development of mammalian hematopoietic stem cells. Nat Immunol 9:129–136

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Yokomizo T, Dzierzak E (2010) Three-dimensional cartography of hematopoietic clusters in the vasculature of whole mouse embryos. Development 137:3651–3661

    CAS  PubMed  Google Scholar 

  93. Zape JP, Zovein AC (2011) Hemogenic endothelium: origins, regulation, and implications for vascular biology. Semin Cell Dev Biol 22:1036–1047

    PubMed  Google Scholar 

  94. Cumano A, Ferraz JC, Klaine M, Di Santo JP, Godin I (2001) Intraembryonic, but not yolk sac hematopoietic precursors, isolated before circulation, provide long-term multilineage reconstitution. Immunity 15:477–485

    CAS  PubMed  Google Scholar 

  95. Nishikawa S-I, Nishikawa S, Kawamoto H, Yoshida H, Kizumoto M, Kataoka H, Katsura Y (1998) In vitro generation of lymphohematopoietic cells from endothelial cells purified from murine embryos. Immunity 8:761–769

    CAS  PubMed  Google Scholar 

  96. Nishikawa S-I, Nishikawa S, Hirashima M, Matsuyoshi N, Kodama H (1998) Progressive lineage analysis by cell sorting and culture identifies FLK + VE-cadherin + cells at a diverging point of endothelial and hemopoietic lineages. Development 125:1747–1757

    CAS  PubMed  Google Scholar 

  97. Chen MJ, Yokomizo T, Zeigler BM, Dzierzak E, Speck NA (2009) Runx1 is required for the endothelial to haematopoietic cell transition but not thereafter. Nature 457:887–891

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Zovein AC, Hofmann JJ, Lynch M, French WJ, Turlo KA, Yang Y, Becker MS, Zanetta L, Dejana E, Gasson JC, Tallquist MD, Iruela-Arispe ML (2008) Fate tracing reveals the endothelial origin of hematopoietic stem cells. Cell Stem Cell 3:625–636

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Kellendonk C, Tronche F, Casanova E, Anlag K, Opherk C, Schütz G (1999) Inducible site-specific recombination in the brain. J Mol Biol 285:175–182

    CAS  PubMed  Google Scholar 

  100. Kim I, Yilmaz OH, Morrison SJ (2005) CD144 (VE-cadherin) is transiently expressed by fetal liver hematopoietic stem cells. Blood 106:903–905

    CAS  PubMed  Google Scholar 

  101. Caveda L, Martin-Padura I, Navarro P, Breviario F, Corada M, Gulino D, Lampugnani MG, Dejana E (1996) Inhibition of cultured cell growth by vascular endothelial cadherin (cadherin-5/VE-cadherin). J Clin Invest 98:886–893

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Dejana E, Bazzoni G, Lampugnani MG (1999) Vascular endothelial (VE)-cadherin: only an intercellular glue? Exp Cell Res 252:13–19

    CAS  PubMed  Google Scholar 

  103. Carmeliet P, Lampugnani M-G, Moons L, Breviario F, Compernolle V, Bono F, Balconi G, Spagnuolo R, Oosthuyse B, Dewerchin M, Zanetti A, Angellilo A, Mattot V, Nuyens D, Lutgens E, Clotman F, de Ruiter MC, Gittenberger-de Groot A, Poelmann R, Lupu F, Herbert J-M, Collen D, Dejana E (1999) Targeted deficiency or cytosolic truncation of the VE-cadherin gene in mice impairs VEGF-mediated endothelial survival and angiogenesis. Cell 98:147–157

    CAS  PubMed  Google Scholar 

  104. Gory-Fauré S, Prandini M-H, Pointu H, Roullot V, Pignot-Paintrand I, Vernet M, Huber P (1999) Role of vascular endothelial-cadherin in vascular morphogenesis. Development 126:2093–2102

    PubMed  Google Scholar 

  105. Spratt NT, Haas H (1960) Integrative mechanisms in development of the early chick blastoderm. I. Regulative potentiality of separated parts. J Exp Zool 145:97–137

    Google Scholar 

  106. Taoudi S, Medvinsky A (2007) Functional identification of the hematopoietic stem cell niche in the ventral domain of the embryonic dorsal aorta. Proc Natl Acad Sci USA 104:9399–9403

    CAS  PubMed  Google Scholar 

  107. Taylor E, Taoudi S, Medvinsky A (2010) Hematopoietic stem cell activity in the aorta-gonad-mesonephros region enhances after mid-day 11 of mouse development. Int J Dev Biol 54:1055–1060

    PubMed  Google Scholar 

  108. Taoudi S, Gonneau C, Moore K, Sheridan JM, Blackburn CC, Taylor E, Medvinsky A (2008) Extensive hematopoietic stem cell generation in the AGM region via maturation of VE-cadherin + CD45 + pre-definitive HSCs. Cell Stem Cell 3:99–108

    CAS  PubMed  Google Scholar 

  109. Kissa K, Herbomel P (2010) Blood stem cells emerge from aortic endothelium by a novel type of cell transition. Nature 464:112–115

    CAS  PubMed  Google Scholar 

  110. Minot CS (1912) Development of the blood, the vascular system and the spleen. In: Keibel F, Mall FP (eds) Manual of human embryology. The Washington Square Press, Philadelphia

    Google Scholar 

  111. North T, Gu T-L, Stacy T, Wang Q, Howard L, Binder M, Marin-Padilla M, Speck NA (1999) Cbfa2 is required for the formation of the intra-aortic hematopoietic clusters. Development 126:2563–2575

    CAS  PubMed  Google Scholar 

  112. Sheridan JM, Taoudi S, Medvinsky A, Blackburn CC (2009) A novel method for the generation of reaggregated organotypic cultures that permits juxtaposition of defined cell populations. Genesis 47:346–351

    PubMed  Google Scholar 

  113. Gyevai A, Chapple PJ, Douglas WH (1978) Long-term maintenance of reaggregated hypothalamic cultures developed from embryonic rat hypothalamus: prostaglandin release during synaptogenesis in vitro. J Cell Sci 34:159–171

    CAS  PubMed  Google Scholar 

  114. Bertrand JY, Giroux S, Golub R, Klaine M, Jalil A, Boucontet L, Godin I, Cumano A (2005) Characterization of purified intraembryonic hematopoietic stem cells as a tool to define their site of origin. Proc Natl Acad Sci USA 102:134–139

    CAS  PubMed  Google Scholar 

  115. North TE, de Bruijn MFTR, Stacy T, Talebian L, Lind E, Robin C, Binder M, Dzierzak E, Speck NA (2002) Runx1 expression marks long-term repopulating hematopoietic stem cells in the midgestation mouse embryo. Immunity 16:661–672

    CAS  PubMed  Google Scholar 

  116. Bertrand JY, Chi NC, Santoso B, Teng S, Stainier DYR, Traver D (2010) Haematopoietic stem cells derive directly from aortic endothelium during development. Nature 464:108–111

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Boisset J-C, van Cappellen W, Andrieu-Soler C, Galjart N, Dzierzak E, Robin C (2010) In vivo imaging of haematopoietic cells emerging from the mouse aortic endothelium. Nature 464:116–120

    CAS  PubMed  Google Scholar 

  118. Cho A, Courtman DW, Langille BL (1995) Apoptosis (programmed cell death) in arteries of the neonatal lamb. Circ Res 76:168–175

    CAS  PubMed  Google Scholar 

  119. Lengerke C, Schmitt S, Bowman TV, Jang IH, Maouche-Chretien L, McKinney-Freeman S, Davidson AJ, Hammerschmidt M, Rentzsch F, Green JBA, Zon LI, Daley GQ (2008) BMP and Wnt specify hematopoietic fate by activation of the Cdx-Hox pathway. Cell Stem Cell 2:72–82

    CAS  PubMed  Google Scholar 

  120. Durand C, Robin C, Bollerot K, Baron MH, Ottersbach K, Dzierzak E (2007) Embryonic stromal clones reveal developmental regulators of definitive hematopoietic stem cells. Proc Natl Acad Sci USA 104:20838–20843

    CAS  PubMed  Google Scholar 

  121. Peeters M, Ottersbach K, Bollerot K, Orelio C, de Bruijn M, Wijgerde M, Dzierzak E (2009) Ventral embryonic tissues and Hedgehog proteins induce early AGM hematopoietic stem cell development. Development 136:2613–2621

    CAS  PubMed  Google Scholar 

  122. Astorga J, Carlsson P (2007) Hedgehog induction of murine vasculogenesis is mediated by Foxf1 and Bmp4. Development 134:3753–3761

    CAS  PubMed  Google Scholar 

  123. Kishigami S, Mishina Y (2005) BMP signaling and early embryonic patterning. Cytokine Growth Factor Rev 16:265–278

    CAS  PubMed  Google Scholar 

  124. Gazzerro E, Smerdel-Ramoya A, Zanotti S, Stadmeyer L, Durand D, Economides AN, Canalis E (2007) Conditional deletion of gremlin causes a transient increase in bone formation and bone mass. J Biol Chem 282:31549–31557

    CAS  PubMed  Google Scholar 

  125. Mitola S, Ravelli C, Moroni E, Salvi V, Leali D, Ballmer-Hofer K, Zammataro L, Presta M (2010) Gremlin is a novel agonist of the major proangiogenic receptor VEGFR2. Blood 116:3677–3680

    CAS  PubMed  Google Scholar 

  126. de Bruijn MFTR, Ma X, Robin C, Ottersbach K, Sanchez M-J, Dzierzak E (2002) Hematopoietic stem cells localize to the endothelial cell layer in the midgestation mouse aorta. Immunity 16:673–683

    PubMed  Google Scholar 

  127. Stifani S, Ma Q (2009) “Runxs and regulations” of sensory and motor neuron subtype differentiation: implications for hematopoietic development. Blood Cells Mol Dis 43:20–26

    PubMed  PubMed Central  Google Scholar 

  128. Liakhovitskaia A, Lana-Elola E, Stamateris E, Rice DP, van’t Hof RJ, Medvinsky A (2010) the essential requirement for Runx1 in the development of the sternum. Dev Biol 340:539–546

    CAS  PubMed  Google Scholar 

  129. Wang X, Blagden C, Fan J, Nowak SJ, Taniuchi I, Littman DR, Burden SJ (2005) Runx1 prevents wasting, myofibrillar disorganization, and autophagy of skeletal muscle. Genes Dev 19:1715–1722

    CAS  PubMed  Google Scholar 

  130. Hoi CSL, Lee SE, Lu S-Y, McDermitt DJ, Osorio KM, Piskun CM, Peters RM, Paus R, Tumbar T (2010) Runx1 directly promotes proliferation of hair follicle stem cells and epithelial tumor formation in mouse skin. Mol Cell Biol 30:2518–2536

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Holmes C, Stanford WL (2007) Concise review: stem cell antigen-1: expression, function, and enigma. Stem Cells 25:1339–1347

    CAS  PubMed  Google Scholar 

  132. Kumano K, Chiba S, Kunisato A, Sata M, Saito T, Nakagami-Yamaguchi E, Yamaguchi T, Masuda S, Shimizu K, Takahashi T, Ogawa S, Hamada Y, Hirai H (2003) Notch1 but not Notch2 is essential for generating hematopoietic stem cells from endothelial cells. Immunity 18:699–711

    CAS  PubMed  Google Scholar 

  133. Hadland BK, Huppert SS, Kanungo J, Xue Y, Jiang R, Gridley T, Conlon RA, Cheng AM, Kopan R, Longmore GD (2004) A requirement for Notch1 distinguishes 2 phases of definitive hematopoiesis during development. Blood 104:3097–3105

    CAS  PubMed  Google Scholar 

  134. Nakagawa M, Ichikawa M, Kumano K, Goyama S, Kawazu M, Asai T, Ogawa S, Kurokawa M, Chiba S (2006) AML/Runx1 rescues Notch1-null mutation-induced deficiency of para-aortic splanchnopleural hematopoiesis. Blood 108:3329–3334

    CAS  PubMed  Google Scholar 

  135. Robert-Moreno A, Espinosa L, de la Pompa JL, Bigas A (2005) RBPjκ-dependent Notch function regulates Gata2 and is essential for the formation of intra-embryonic hematopoietic cells. Development 132:1117–1126

    CAS  PubMed  Google Scholar 

  136. Landry J-R, Kinston S, Knezevic K, de Bruijn MFTR, Wilson N, Nottingham WT, Peitz M, Edenhofer F, Pimanda JE, Ottersbach K, Göttgens B (2008) Runx genes are direct targets of Scl/Tal1 in the yolk sac and fetal liver. Blood 111:3005–3014

    CAS  PubMed  Google Scholar 

  137. Hayashi K, Abe N, Watanabe T, Obinata M, Ito M, Sato T, Habu S, Satake M (2001) Overexpression of AML1 transcription factor drives thymocytes into the CD8 single-positive lineage. J Immunol 167:4957–4965

    CAS  PubMed  Google Scholar 

  138. Feng R, Desbordes SC, Xie H, Tillo ES, Pixley F, Stanley ER, Graf T (2008) PU.1 and C/EBPα/β converts fibroblasts into macrophage-like cells. Proc Natl Acad Sci USA 105:6057–6062

    CAS  PubMed  Google Scholar 

  139. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676

    CAS  PubMed  Google Scholar 

  140. Vierbuchen T, Ostermeier A, Pang ZP, Kokubu Y, Südhof TC, Wernig M (2010) Direct conversion of fibroblasts to functional neurons by defined factors. Nature 463:1035–1041

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Marro S, Pang ZP, Yang N, Tsai M-C, Qu K, Chang HY, Südhof TC, Wernig M (2011) Direct lineage conversion of terminally differentiated hepatocytes to functional neurons. Cell Stem Cell 9:374–382

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Giorgetti A, Marchetto MCN, Li M, Yu D, Fazzina R, Mu Y, Adamo A, Paramonov I, Cardoso JC, Monasterio MB, Bardy C, Cassiani-Ingoni R, Liu G-H, Gage FH, Izpisua Belmonte JC (2012) Cord blood-derived neuronal cells by ectopic expression of Sox2 and c-Myc. Proc Natl Acad Sci USA 109:12556–12561

    CAS  PubMed  Google Scholar 

  143. Goyama S, Yamaguchi Y, Imai Y, Kawazu M, Nakagawa M, Asai T, Kumano K, Minati K, Ogawa S, Chiba S, Kurokawa M, Hirai H (2004) The transcriptionally active form of AML1 is required for hematopoietic rescue of the AML1-deficient embryonic para-aortic splanchnopleural (P-Sp) region. Blood 104:3558–3564

    CAS  PubMed  Google Scholar 

  144. Sakai E, Kitajima K, Sato A, Nakano T (2009) Increase of hematopoietic progenitor and suppression of endothelial gene expression by Runx1 expression during in vitro ES differentiation. Exp Hematol 37:334–345

    CAS  PubMed  Google Scholar 

  145. Johnson GR, Moore MAS (1975) Role of stem cell migration in initiation of mouse foetal liver haemopoiesis. Nature 258:726–728

    CAS  PubMed  Google Scholar 

  146. Houssaint E (1981) Differentiation of the mouse hepatic primordium. II. Extrinsic origin of the haemopoietic cell line. Cell Differ 10:243–252

    CAS  PubMed  Google Scholar 

  147. Gualdi R, Bossard P, Zheng M, Hamada Y, Coleman JR, Zaret KS (1996) Hepatic specification of the gut endoderm in vitro: cell signaling and transcriptional control. Genes Dev 10:1670–1682

    CAS  PubMed  Google Scholar 

  148. Matsumoto K, Yoshitomi H, Rossant J, Zaret KS (2001) Liver organogenesis promoted by endothelial cells prior to vascular function. Science 294:559–563

    CAS  PubMed  Google Scholar 

  149. Lammert E, Cleaver O, Melton D (2003) Role of endothelial cells in early pancreas and liver development. Mech Dev 120:59–64

    CAS  PubMed  Google Scholar 

  150. Tavassoli M (1991) Embryonic and fetal hemopoiesis: an overview. Blood Cells 17:269–281

    CAS  PubMed  Google Scholar 

  151. Chen MJ, Li Y, De Obaldia ME, Yang Q, Yzaguirre AD, Yamada-Inagawa T, Vink CS, Bhandoola A, Dzierzak E, Speck NA (2012) Erythroid/myeloid progenitors and hematopoietic stem cell originate from distinct populations of endothelial cells. Cell Stem Cell 9:541–552

    CAS  Google Scholar 

  152. Kumaravelu P, Hook L, Morrison AM, Ure J, Zhao S, Zuyev S, Ansell J, Medvinsky A (2002) Quantitative developmental anatomy of definitive haematopoietic stem cells/long-term repopulating units (HSC/RUs): role of the aorta-gonad-mesonephros (AGM) region and the yolk sac in colonization of the mouse embryonic liver. Development 129:4891–4899

    CAS  PubMed  Google Scholar 

  153. Kieusseian A, Brunet de la Grange P, Burlen-Defranoux O, Godin I, Cumano A (2012) Immature hematopoietic stem cells undergo maturation in the fetal liver. Development 139:3521–3530

    CAS  PubMed  Google Scholar 

  154. Collardeau-Frachon S, Scoazec J-Y (2008) Vascular development and differentiation during human liver organogenesis. Anat Rec 291:614–627

    Google Scholar 

  155. Rybtsov S, Sobiesiak M, Taoudi S, Souilhol S, Senserrich J, Liakhovitskaia A, Ivanovs A, Frampton J, Zhao S, Medvinsky A (2011) Hierarchical organization and early hematopoietic specification of the developing HSC lineage in the AGM region. J Exp Med 208:1305–1315

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Ginhoux F, Greter M, Leboeuf M, Nandi S, See P, Gokhan S, Mehler MF, Conway SJ, Ng LG, Stanley ER, Samokhvalov IM, Merad M (2010) Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science 330:841–845

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Couvelard A, Scoazec J-Y, Dauge M-C, Bringuier A-F, Potet F, Feldmann G (1996) Structural and functional differentiation of sinusoidal endothelial cells during liver organogenesis in human. Blood 87:4568–4580

    CAS  PubMed  Google Scholar 

  158. Lichanska AM, Hume DA (2000) Origins and functions of phagocytes in the embryo. Exp Hematol 28:601–611

    CAS  PubMed  Google Scholar 

  159. Bertrand JY, Jalil A, Klaine M, Jung S, Cumano A, Godin I (2005) Three pathways to mature macrophages in the early mouse yolk sac. Blood 106:3004–3011

    CAS  PubMed  Google Scholar 

  160. Penaloza C, Lin L, Lockshin RA, Zakeri Z (2006) Cell death in development: shaping the embryo. Histochem Cell Biol 126:149–158

    CAS  PubMed  Google Scholar 

  161. Silva MT, do Vale A, dos Santos NMN (2008) Secondary necrosis in multicellular animals: an outcome of apoptosis with pathogenic implications. Apoptosis 13:436–482

    Google Scholar 

  162. Potocnik AJ, Brakebusch C, Fassler R (2000) Fetal and adult hematopoietic stem cells require β1 integrin function for colonizing fetal liver, spleen, and bone marrow. Immunity 12:653–663

    CAS  PubMed  Google Scholar 

  163. Hirsh E, Iglesias A, Potocnik AJ, Hartmann U, Fässler R (1996) Impaired migration but not differentiation of haematopoietic stem cells in the absence of β1 integrins. Nature 380:171–175

    Google Scholar 

  164. Harris SG, Padilla J, Koumas L, Ray D, Phipps RP (2002) Prostaglandins as modulators of immunity. Trends Immunol 23:144–150

    CAS  PubMed  Google Scholar 

  165. North TE, Goessling W, Walkley CR, Lengerke C, Kopani KR, Lord AM, Weber GJ, Bowman TV, Jang I-H, Grosser T, FitzGerald GA, Daley GQ, Orkin SH, Zon LI (2007) Prostaglandin E2 regulates vertebrate haematopoietic stem cell homeostasis. Nature 447:1007–1011

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Nathan C (2002) Points of control in inflammation. Nature 420:846–852

    CAS  PubMed  Google Scholar 

  167. Cabral GA (2005) Lipids as bioeffectors in the immune system. Life Sci 77:1699–1710

    CAS  PubMed  Google Scholar 

  168. Orelio C, Haak E, Peeters M, Dzierzak E (2008) Interleukin-1 mediated hematopoietic cell regulation in the aorta-gonad-mesonephros region of the mouse embryo. Blood 112:4895–4904

    CAS  PubMed  Google Scholar 

  169. Gurjar MV, Deleon J, Sharma RV, Bhalla RC (2001) Role of reactive oxygen species in IL-1 beta-stimulated sustained ERK activation and MMP-9 induction. Am J Physiol Heart Circ Physiol 281:H2568–H2574

    CAS  PubMed  Google Scholar 

  170. Gong Y, Hart E, Shchurin A, Hoover-Plow J (2008) Inflammatory macrophage migration requires MMP-9 activation by plasminogen in mice. J Clin Invest 118:3012–3024

    CAS  PubMed  PubMed Central  Google Scholar 

  171. Hartner JC, Walkley CR, Lu J, Orkin SH (2009) ADAR1 is essential for the maintenance of hematopoiesis and suppression of interferon signaling. Nat Immunol 10:109–115

    CAS  PubMed  PubMed Central  Google Scholar 

  172. Quackenbush EJ, Wershil BK, Aguirre V, Gutierrez-Ramos J-C (2010) Eotaxin modulates myelopoiesis and mast cell development from embryonic hematopoietic progenitors. Blood 92:1887–1897

    Google Scholar 

  173. Kohchi C, Noguchi K, Tanabe Y, Mizuno D-I, Soma G-I (1994) Constitutive expression of TNF-α and -β genes in mouse embryo: roles of cytokines as regulator and effector on development. Int J Biochem 26:111–119

    CAS  PubMed  Google Scholar 

  174. Flierl MA, Rittirsch D, Huber-Lang M, Sarma JV, Ward PA (2008) Catecholamines-crafty weapons in the inflammatory arsenal of immune/inflammatory cells or opening Pandora’s box. Mol Med 14:195–204

    CAS  PubMed  PubMed Central  Google Scholar 

  175. Chen Y, Ke Q, Xiao Y-F, Wu G, Kaplan E, Hampton TG, Malek S, Min J-Y, Amende I, Morgan JP (2005) Cocaine and catecholamines enhance inflammatory cell retention in the coronary circulation of mice by upregulation of adhesion molecules. Am J Physiol Heart Circ Physiol 288:H2323–H2331

    CAS  PubMed  Google Scholar 

  176. Guzik TJ, Korbut R, Adamek-Guzik T (2003) Nitric oxide and superoxide in inflammation and immune regulation. J Physiol Pharmacol 54:469–487

    CAS  PubMed  Google Scholar 

  177. Krasnov P, Michurina T, Packer MA, Stasiv Y, Nakaya N, Moore KA, Drazan KE, Enikolopov G (2008) Neuronal nitric oxide synthase contributes to the regulation of hematopoiesis. Mol Med 14:141–149

    CAS  PubMed  PubMed Central  Google Scholar 

  178. Beste MT, Hammer DA (2008) Selectin catch-slip kinetics encode shear threshold adhesive behavior of rolling leukocytes. Proc Natl Acad Sci USA 105:20716–20721

    CAS  PubMed  Google Scholar 

  179. Yago T, Zarnitsyna VI, Klopocki AG, McEver RP, Zhu C (2007) Transport governs flow-enhanced cell tethering through L-selectin at threshold shear. Biophys J 92:330–342

    CAS  PubMed  PubMed Central  Google Scholar 

  180. Kansas GS (1996) Selectins and their ligands: current concepts and controversies. Blood 88:3259–3287

    CAS  PubMed  Google Scholar 

  181. Finger EB, Puri KD, Alon R, Lawrence MB, von Andrian UH, Springer TA (1996) Adhesion through L-selectin requires a threshold hydrodynamic shear. Nature 379:266–269

    CAS  PubMed  Google Scholar 

  182. Nizet V, Johnson RS (2009) Interdependence of hypoxic and innate immune responses. Nat Rev Immunol 9:609–617

    CAS  PubMed  Google Scholar 

  183. Taylor CT, Cummins EP (2009) The role of NF-κB in hypoxia-induced gene expression. Ann NY Acad Sci 1177:178–184

    CAS  PubMed  Google Scholar 

  184. Dehne N, Brüne B (2009) HIF-1 in the inflammatory microenvironment. Exp Cell Res 315:1791–1797

    CAS  PubMed  Google Scholar 

  185. Ahn KS, Aggarwal BB (2005) Transcription factor NF-κB. A sensor for smoke and stress signal. Ann N Y Acad Sci 1056:218–233

    CAS  PubMed  Google Scholar 

  186. Orelio C, Harvey KN, Miles C, Oostendorp RAJ, van der Horn K, Dzierzak E (2004) The role of apoptosis in the development of AGM hematopoietic stem cells revealed by Bcl-2 overexpression. Blood 103:4084–4092

    CAS  PubMed  Google Scholar 

  187. Wood W, Turmaine M, Weber R, Camp V, Maki RA, McKercher SR, Martin P (2000) Mesenchymal cells engulf and clear apoptotic footplate cells in macrophageless PU.1 null mouse embryos. Development 127:5245–5252

    CAS  PubMed  Google Scholar 

  188. Halin C, Detmar M (2008) Chapter 1. Inflammation, angiogenesis and lymphangiogenesis. Methods Enzymol 445:1–25

    CAS  PubMed  Google Scholar 

  189. Hoeffel G, Wang Y, Greter M, See P, Teo P, Malleret B, Leboeuf M, Low D, Oller G, Almeida F, Choy SHY, Grisotto M, Renia L, Conway SJ, Stanley ER, Chan JKY, Ng LG, Samokhvalov IM, Merad M, Ginhoux F (2012) Adult Langerhans cells derive predominantly from embryonic fetal liver monocytes with a minor contribution of yolk sac–derived macrophages. J Exp Med 209:1167–1181

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by Science and Technology Planning Project of Guangdong Province, China (2011A060901019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor M. Samokhvalov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Samokhvalov, I.M. Deconvoluting the ontogeny of hematopoietic stem cells. Cell. Mol. Life Sci. 71, 957–978 (2014). https://doi.org/10.1007/s00018-013-1364-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-013-1364-7

Keywords

Navigation