Skip to main content

Advertisement

Log in

Fibronectin in tissue regeneration: timely disassembly of the scaffold is necessary to complete the build

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Tissue injury initiates extracellular matrix molecule expression, including fibronectin production by local cells and fibronectin leakage from plasma. To benefit tissue regeneration, fibronectin promotes opsonization of tissue debris, migration, proliferation, and contraction of cells involved in the healing process, as well as angiogenesis. When regeneration proceeds, the fibronectin matrix is fully degraded. However, in a diseased environment, fibronectin clearance is often disturbed, allowing structural variants to persist and contribute to disease progression and failure of regeneration. Here, we discuss first how fibronectin helps tissue regeneration, with a focus on normal cutaneous wound healing as an example of complete tissue recovery. Then, we continue to argue that, although the fibronectin matrix generated following cartilage and central nervous system white matter (myelin) injury initially benefits regeneration, fibronectin clearance is incomplete in chronic wounds (skin), osteoarthritis (cartilage), and multiple sclerosis (myelin). Fibronectin fragments or aggregates persist, which impair tissue regeneration. The similarities in fibronectin-mediated mechanisms of frustrated regeneration indicate that complete fibronectin clearance is a prerequisite for recovery in any tissue. Also, they provide common targets for developing therapeutic strategies in regenerative medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Nishinarita S, Yamamoto M, Takizawa T, Hayakawa J, Karasaki M, Sawada S (1990) Increased plasma fibronectin in patients with systemic lupus erythematosus. Clin Rheumatol 9:214–219

    PubMed  CAS  Google Scholar 

  2. Goos M, Lange P, Hanisch UK, Prinz M, Scheffel J, Bergmann R, Ebert S, Nau R (2007) Fibronectin is elevated in the cerebrospinal fluid of patients suffering from bacterial meningitis and enhances inflammation caused by bacterial products in primary mouse microglial cell cultures. J Neurochem 102:2049–2060

    PubMed  CAS  Google Scholar 

  3. Plow EF, Haas TA, Zhang L, Loftus J, Smith JW (2000) Ligand binding to integrins. J Biol Chem 275:21785–21788

    PubMed  CAS  Google Scholar 

  4. Pankov R, Yamada KM (2002) Fibronectin at a glance. J Cell Sci 115:3861–3863

    PubMed  CAS  Google Scholar 

  5. Mosher DF (1988) Fibronectin. Academic Press, Inc., San Diego

    Google Scholar 

  6. George EL, Georges-Labouesse EN, Patel-King RS, Rayburn H, Hynes RO (1993) Defects in mesoderm, neural tube and vascular development in mouse embryos lacking fibronectin. Development 119:1079–1091

    PubMed  CAS  Google Scholar 

  7. Scanzello CR, Plaas A, Crow MK (2008) Innate immune system activation in osteoarthritis: is osteoarthritis a chronic wound? Curr Opin Rheumatol 20:565–572

    PubMed  CAS  Google Scholar 

  8. Velnar T, Bailey T, Smrkolj V (2009) The wound healing process: an overview of the cellular and molecular mechanisms. J Int Med Res 37:1528–1542

    PubMed  CAS  Google Scholar 

  9. Tonnesen MG, Feng X, Clark RA (2000) Angiogenesis in wound healing. J Investig Dermatol Symp Proc 5:40–46

    PubMed  CAS  Google Scholar 

  10. Baum CL, Arpey CJ (2005) Normal cutaneous wound healing: clinical correlation with cellular and molecular events. Dermatol Surg 31:674–686 (discussion: 686)

    PubMed  CAS  Google Scholar 

  11. Clark RA (1988) Potential roles of fibronectin in cutaneous wound repair. Arch Dermatol 124:201–206

    PubMed  CAS  Google Scholar 

  12. Colvin RB (1989) In: Mosher DF (ed) Fibronectin in wound healing. Academic Press, Inc., San Diego, pp 213–254

    Google Scholar 

  13. Midwood KS, Mao Y, Hsia HC, Valenick LV, Schwarzbauer JE (2006) Modulation of cell-fibronectin matrix interactions during tissue repair. J Investig Dermatol Symp Proc 11:73–78

    PubMed  CAS  Google Scholar 

  14. Sakai T, Johnson KJ, Murozono M, Sakai K, Magnuson MA, Wieloch T, Cronberg T, Isshiki A, Erickson HP, Fassler R (2001) Plasma fibronectin supports neuronal survival and reduces brain injury following transient focal cerebral ischemia but is not essential for skin-wound healing and hemostasis. Nat Med 7:324–330

    PubMed  CAS  Google Scholar 

  15. Ni H, Yuen PS, Papalia JM, Trevithick JE, Sakai T, Fassler R, Hynes RO, Wagner DD (2003) Plasma fibronectin promotes thrombus growth and stability in injured arterioles. Proc Natl Acad Sci USA 100:2415–2419

    PubMed  CAS  Google Scholar 

  16. Brown LF, Dubin D, Lavigne L, Logan B, Dvorak HF, Van de Water L (1993) Macrophages and fibroblasts express embryonic fibronectins during cutaneous wound healing. Am J Pathol 142:793–801

    PubMed  CAS  Google Scholar 

  17. Takamiya M, Kumagai R, Nakayashiki N, Aoki Y (2006) A study on mRNA expressions of fibronectin in dermal and cerebral wound healing for wound age estimation. Leg Med (Tokyo) 8:214–219

    CAS  Google Scholar 

  18. Miller DR, Mankin HJ, Shoji H, D’Ambrosia RD (1984) Identification of fibronectin in preparations of osteoarthritic human cartilage. Connect Tissue Res 12:267–275

    PubMed  CAS  Google Scholar 

  19. Sobel RA, Mitchell ME (1989) Fibronectin in multiple sclerosis lesions. Am J Pathol 135:161–168

    PubMed  CAS  Google Scholar 

  20. van Horssen J, Bo L, Vos CM, Virtanen I, de Vries HE (2005) Basement membrane proteins in multiple sclerosis-associated inflammatory cuffs: potential role in influx and transport of leukocytes. J Neuropathol Exp Neurol 64:722–729

    PubMed  Google Scholar 

  21. Satoh JI, Tabunoki H, Yamamura T (2009) Molecular network of the comprehensive multiple sclerosis brain-lesion proteome. Mult Scler 15:531–541

    PubMed  CAS  Google Scholar 

  22. Hibbits N, Yoshino J, Le TQ, Armstrong RC (2012) Astrogliosis during acute and chronic cuprizone demyelination and implications for remyelination. ASN Neuro 4(6):393–408. doi:10.1042/AN20120062

    PubMed  CAS  Google Scholar 

  23. Stoffels JM, de Jonge JC, Stancic M, Nomden A, van Strien ME, Ma D, Siskova Z, Maier O, ffrench-Constant C, Franklin RJ, Hoekstra D, Zhao C, Baron W (2013) Fibronectin aggregation in multiple sclerosis lesions impairs remyelination. Brain 136:116–131

    PubMed  Google Scholar 

  24. Chevalier X, Claudepierre P, Groult N, Zardi L, Hornebeck W (1996) Presence of ED-A containing fibronectin in human articular cartilage from patients with osteoarthritis and rheumatoid arthritis. J Rheumatol 23:1022–1030

    PubMed  CAS  Google Scholar 

  25. Chevalier X, Groult N, Hornebeck W (1996) Increased expression of the Ed-B-containing fibronectin (an embryonic isoform of fibronectin) in human osteoarthritic cartilage. Br J Rheumatol 35:407–415

    PubMed  CAS  Google Scholar 

  26. Clark RA (2001) Fibrin and wound healing. Ann NY Acad Sci 936:355–367

    PubMed  CAS  Google Scholar 

  27. Clark RA, An JQ, Greiling D, Khan A, Schwarzbauer JE (2003) Fibroblast migration on fibronectin requires three distinct functional domains. J Invest Dermatol 121:695–705

    PubMed  CAS  Google Scholar 

  28. Bielefeld KA, Amini-Nik S, Whetstone H, Poon R, Youn A, Wang J, Alman BA (2011) Fibronectin and beta-catenin act in a regulatory loop in dermal fibroblasts to modulate cutaneous healing. J Biol Chem 286:27687–27697

    PubMed  CAS  Google Scholar 

  29. Singh P, Reimer CL, Peters JH, Stepp MA, Hynes RO, Van De Water L (2004) The spatial and temporal expression patterns of integrin alpha9beta1 and one of its ligands, the EIIIA segment of fibronectin, in cutaneous wound healing. J Invest Dermatol 123:1176–1181

    PubMed  CAS  Google Scholar 

  30. Serini G, Bochaton-Piallat ML, Ropraz P, Geinoz A, Borsi L, Zardi L, Gabbiani G (1998) The fibronectin domain ED-A is crucial for myofibroblastic phenotype induction by transforming growth factor-beta1. J Cell Biol 142:873–881

    PubMed  CAS  Google Scholar 

  31. Kohan M, Muro AF, White ES, Berkman N (2010) EDA-containing cellular fibronectin induces fibroblast differentiation through binding to alpha4beta7 integrin receptor and MAPK/Erk 1/2-dependent signaling. FASEB J 24:4503–4512

    PubMed  CAS  Google Scholar 

  32. Muro AF, Chauhan AK, Gajovic S, Iaconcig A, Porro F, Stanta G, Baralle FE (2003) Regulated splicing of the fibronectin EDA exon is essential for proper skin wound healing and normal lifespan. J Cell Biol 162:149–160

    PubMed  CAS  Google Scholar 

  33. Tan MH, Sun Z, Opitz SL, Schmidt TE, Peters JH, George EL (2004) Deletion of the alternatively spliced fibronectin EIIIA domain in mice reduces atherosclerosis. Blood 104:11–18

    PubMed  CAS  Google Scholar 

  34. Fukuda T, Yoshida N, Kataoka Y, Manabe R, Mizuno-Horikawa Y, Sato M, Kuriyama K, Yasui N, Sekiguchi K (2002) Mice lacking the EDB segment of fibronectin develop normally but exhibit reduced cell growth and fibronectin matrix assembly in vitro. Cancer Res 62:5603–5610

    PubMed  CAS  Google Scholar 

  35. Grinnell F, Ho CH, Wysocki A (1992) Degradation of fibronectin and vitronectin in chronic wound fluid: analysis by cell blotting, immunoblotting, and cell adhesion assays. J Invest Dermatol 98:410–416

    PubMed  CAS  Google Scholar 

  36. Moor AN, Vachon DJ, Gould LJ (2009) Proteolytic activity in wound fluids and tissues derived from chronic venous leg ulcers. Wound Repair Regen 17:832–839

    PubMed  Google Scholar 

  37. Falanga V (2004) The chronic wound: impaired healing and solutions in the context of wound bed preparation. Blood Cells Mol Dis 32:88–94

    PubMed  CAS  Google Scholar 

  38. Widgerow AD (2013) Chronic wounds - is cellular “reception” at fault? Examining integrins and intracellular signalling. Int Wound J 10:185–192

    PubMed  Google Scholar 

  39. Wachtfogel YT, Abrams W, Kucich U, Weinbaum G, Schapira M, Colman RW (1988) Fibronectin degradation products containing the cytoadhesive tetrapeptide stimulate human neutrophil degranulation. J Clin Invest 81:1310–1316

    PubMed  CAS  Google Scholar 

  40. Okamura Y, Watari M, Jerud ES, Young DW, Ishizaka ST, Rose J, Chow JC, Strauss JF 3rd (2001) The extra domain A of fibronectin activates Toll-like receptor 4. J Biol Chem 276:10229–10233

    PubMed  CAS  Google Scholar 

  41. Gondokaryono SP, Ushio H, Niyonsaba F, Hara M, Takenaka H, Jayawardana ST, Ikeda S, Okumura K, Ogawa H (2007) The extra domain A of fibronectin stimulates murine mast cells via Toll-like receptor 4. J Leukoc Biol 82:657–665

    PubMed  CAS  Google Scholar 

  42. Loeser RF (2008) Molecular mechanisms of cartilage destruction in osteoarthritis. J Musculoskelet Neuronal Interact 8:303–306

    PubMed  CAS  Google Scholar 

  43. Edmonds S (2009) Therapeutic targets for osteoarthritis. Maturitas 63:191–194

    PubMed  CAS  Google Scholar 

  44. Bing DH, Almeda S, Isliker H, Lahav J, Hynes RO (1982) Fibronectin binds to the C1q component of complement. Proc Natl Acad Sci USA 79:4198–4201

    PubMed  CAS  Google Scholar 

  45. Carsons SE, Schwartzman S, Diamond HS, Berkowitz E (1988) Interaction between fibronectin and C1q in rheumatoid synovial fluid and normal plasma. Clin Exp Immunol 72:37–42

    PubMed  CAS  Google Scholar 

  46. Lasarte JJ, Casares N, Gorraiz M, Hervas-Stubbs S, Arribillaga L, Mansilla C, Durantez M, Llopiz D, Sarobe P, Borras-Cuesta F, Prieto J, Leclerc C (2007) The extra domain A from fibronectin targets antigens to TLR4-expressing cells and induces cytotoxic T cell responses in vivo. J Immunol 178:748–756

    PubMed  CAS  Google Scholar 

  47. Yasuda T (2006) Cartilage destruction by matrix degradation products. Mod Rheumatol 16:197–205

    PubMed  CAS  Google Scholar 

  48. Sofat N (2009) Analysing the role of endogenous matrix molecules in the development of osteoarthritis. Int J Exp Pathol 90:463–479

    PubMed  CAS  Google Scholar 

  49. Xie DL, Meyers R, Homandberg GA (1992) Fibronectin fragments in osteoarthritic synovial fluid. J Rheumatol 19:1448–1452

    PubMed  CAS  Google Scholar 

  50. Zack MD, Arner EC, Anglin CP, Alston JT, Malfait AM, Tortorella MD (2006) Identification of fibronectin neoepitopes present in human osteoarthritic cartilage. Arthr Rheum 54:2912–2922

    CAS  Google Scholar 

  51. Gendron C, Kashiwagi M, Lim NH, Enghild JJ, Thogersen IB, Hughes C, Caterson B, Nagase H (2007) Proteolytic activities of human ADAMTS-5: comparative studies with ADAMTS-4. J Biol Chem 282:18294–18306

    PubMed  CAS  Google Scholar 

  52. Zack MD, Malfait AM, Skepner AP, Yates MP, Griggs DW, Hall T, Hills RL, Alston JT, Nemirovskiy OV, Radabaugh MR, Leone JW, Arner EC, Tortorella MD (2009) ADAM-8 isolated from human osteoarthritic chondrocytes cleaves fibronectin at Ala (271). Arthr Rheum 60:2704–2713

    CAS  Google Scholar 

  53. Homandberg GA, Hui F (1994) High concentrations of fibronectin fragments cause short-term catabolic effects in cartilage tissue while lower concentrations cause continuous anabolic effects. Arch Biochem Biophys 311:213–218

    PubMed  CAS  Google Scholar 

  54. Homandberg GA, Meyers R, Xie DL (1992) Fibronectin fragments cause chondrolysis of bovine articular cartilage slices in culture. J Biol Chem 267:3597–3604

    PubMed  CAS  Google Scholar 

  55. Yasuda T, Poole AR (2002) A fibronectin fragment induces type II collagen degradation by collagenase through an interleukin-1-mediated pathway. Arthr Rheum 46:138–148

    CAS  Google Scholar 

  56. Homandberg GA, Hui F, Wen C, Purple C, Bewsey K, Koepp H, Huch K, Harris A (1997) Fibronectin-fragment-induced cartilage chondrolysis is associated with release of catabolic cytokines. Biochem J 321(Pt 3):751–757

    PubMed  CAS  Google Scholar 

  57. Pulai JI, Chen H, Im HJ, Kumar S, Hanning C, Hegde PS, Loeser RF (2005) NF-kappa B mediates the stimulation of cytokine and chemokine expression by human articular chondrocytes in response to fibronectin fragments. J Immunol 174:5781–5788

    PubMed  CAS  Google Scholar 

  58. Long D, Blake S, Song XY, Lark M, Loeser RF (2008) Human articular chondrocytes produce IL-7 and respond to IL-7 with increased production of matrix metalloproteinase-13. Arthr Res Ther 10:R23

    Google Scholar 

  59. Werb Z, Tremble PM, Behrendtsen O, Crowley E, Damsky CH (1989) Signal transduction through the fibronectin receptor induces collagenase and stromelysin gene expression. J Cell Biol 109:877–889

    PubMed  CAS  Google Scholar 

  60. Xie DL, Hui F, Meyers R, Homandberg GA (1994) Cartilage chondrolysis by fibronectin fragments is associated with release of several proteinases: stromelysin plays a major role in chondrolysis. Arch Biochem Biophys 311:205–212

    PubMed  CAS  Google Scholar 

  61. Yasuda T, Poole AR, Shimizu M, Nakagawa T, Julovi SM, Tamamura H, Fujii N, Nakamura T (2003) Involvement of CD44 in induction of matrix metalloproteinases by a COOH-terminal heparin-binding fragment of fibronectin in human articular cartilage in culture. Arthr Rheum 48:1271–1280

    CAS  Google Scholar 

  62. Stanton H, Ung L, Fosang AJ (2002) The 45-kDa collagen-binding fragment of fibronectin induces matrix metalloproteinase-13 synthesis by chondrocytes and aggrecan degradation by aggrecanases. Biochem J 364:181–190

    PubMed  CAS  Google Scholar 

  63. Yasuda T (2011) Activation of Akt leading to NF-kappaB up-regulation in chondrocytes stimulated with fibronectin fragment. Biomed Res 32:209–215

    PubMed  CAS  Google Scholar 

  64. Sofat N, Robertson SD, Wait R (2012) Fibronectin III 13–14 domains induce joint damage via Toll-like receptor 4 activation and synergize with interleukin-1 and tumour necrosis factor. J Innate Immun 4:69–79

    PubMed  CAS  Google Scholar 

  65. Forsyth CB, Pulai J, Loeser RF (2002) Fibronectin fragments and blocking antibodies to alpha2beta1 and alpha5beta1 integrins stimulate mitogen-activated protein kinase signaling and increase collagenase 3 (matrix metalloproteinase 13) production by human articular chondrocytes. Arthr Rheum 46:2368–2376

    CAS  Google Scholar 

  66. Homandberg GA, Costa V, Wen C (2002) Fibronectin fragments active in chondrocytic chondrolysis can be chemically cross-linked to the alpha5 integrin receptor subunit. Osteoarthr Cartil 10:938–949

    PubMed  CAS  Google Scholar 

  67. Del Carlo M, Schwartz D, Erickson EA, Loeser RF (2007) Endogenous production of reactive oxygen species is required for stimulation of human articular chondrocyte matrix metalloproteinase production by fibronectin fragments. Free Radic Biol Med 42:1350–1358

    PubMed  Google Scholar 

  68. Huhtala P, Humphries MJ, McCarthy JB, Tremble PM, Werb Z, Damsky CH (1995) Cooperative signaling by alpha 5 beta 1 and alpha 4 beta 1 integrins regulates metalloproteinase gene expression in fibroblasts adhering to fibronectin. J Cell Biol 129:867–879

    PubMed  CAS  Google Scholar 

  69. Peters JH, Loredo GA, Benton HP (2002) Is osteoarthritis a “fibronectin-integrin imbalance disorder”? Osteoarthr Cartil 10:831–835

    PubMed  CAS  Google Scholar 

  70. Homandberg GA, Meyers R, Williams JM (1993) Intraarticular injection of fibronectin fragments causes severe depletion of cartilage proteoglycans in vivo. J Rheumatol 20:1378–1382

    PubMed  CAS  Google Scholar 

  71. Yasuda T, Kakinuma T, Julovi SM, Yoshida M, Hiramitsu T, Akiyoshi M, Nakamura T (2004) COOH-terminal heparin-binding fibronectin fragment induces nitric oxide production in rheumatoid cartilage through CD44. Rheumatology (Oxford) 43:1116–1120

    CAS  Google Scholar 

  72. Williams JM, Zhang J, Kang H, Ummadi V, Homandberg GA (2003) The effects of hyaluronic acid on fibronectin fragment mediated cartilage chondrolysis in skeletally mature rabbits. Osteoarthr Cartil 11:44–49

    PubMed  CAS  Google Scholar 

  73. Homandberg GA, Hui F, Wen C (1996) Fibronectin fragment mediated cartilage chondrolysis. I. Suppression by anti-oxidants. Biochim Biophys Acta 1317:134–142

    PubMed  CAS  Google Scholar 

  74. Homandberg GA, Hui F, Wen C (1996) Fibronectin fragment mediated cartilage chondrolysis. II. Reparative effects of anti-oxidants. Biochim Biophys Acta 1317:143–148

    PubMed  CAS  Google Scholar 

  75. Homandberg GA, Guo D, Ray LM, Ding L (2006) Mixtures of glucosamine and chondroitin sulfate reverse fibronectin fragment mediated damage to cartilage more effectively than either agent alone. Osteoarthr Cartil 14:793–806

    PubMed  CAS  Google Scholar 

  76. Kang Y, Eger W, Koepp H, Williams JM, Kuettner KE, Homandberg GA (1999) Hyaluronan suppresses fibronectin fragment-mediated damage to human cartilage explant cultures by enhancing proteoglycan synthesis. J Orthop Res 17:858–869

    PubMed  CAS  Google Scholar 

  77. Yasuda T (2010) Comparison of hyaluronan effects among normal, osteoarthritis, and rheumatoid arthritis cartilages stimulated with fibronectin fragment. Biomed Res 31:63–69

    PubMed  CAS  Google Scholar 

  78. Ascherio A, Munger KL, Lunemann JD (2012) The initiation and prevention of multiple sclerosis. Nat Rev Neurol 8:602–612

    PubMed  CAS  Google Scholar 

  79. Wolswijk G (1998) Chronic stage multiple sclerosis lesions contain a relatively quiescent population of oligodendrocyte precursor cells. J Neurosci 18:601–609

    PubMed  CAS  Google Scholar 

  80. Wolswijk G (2002) Oligodendrocyte precursor cells in the demyelinated multiple sclerosis spinal cord. Brain 125:338–349

    PubMed  Google Scholar 

  81. Trapp BD, Nave KA (2008) Multiple sclerosis: an immune or neurodegenerative disorder? Annu Rev Neurosci 31:247–269

    PubMed  CAS  Google Scholar 

  82. Franklin RJ, ffrench-Constant C (2008) Remyelination in the CNS: from biology to therapy. Nat Rev Neurosci 9:839–855

    PubMed  CAS  Google Scholar 

  83. Franklin RJ, ffrench-Constant C, Edgar JM, Smith KJ (2012) Neuroprotection and repair in multiple sclerosis. Nat Rev Neurol 8:624–634

    PubMed  Google Scholar 

  84. Ballabh P, Braun A, Nedergaard M (2004) The blood–brain barrier: an overview: structure, regulation, and clinical implications. Neurobiol Dis 16:1–13

    PubMed  CAS  Google Scholar 

  85. Man S, Tucky B, Bagheri N, Li X, Kochar R, Ransohoff RM (2009) Alpha4 Integrin/FN-CS1 mediated leukocyte adhesion to brain microvascular endothelial cells under flow conditions. J Neuroimmunol 210:92–99

    PubMed  CAS  Google Scholar 

  86. Rudick R, Polman C, Clifford D, Miller D, Steinman L (2013) Natalizumab: bench to bedside and beyond. JAMA Neurol 70:172–182

    PubMed  Google Scholar 

  87. van der Laan LJ, De Groot CJ, Elices MJ, Dijkstra CD (1997) Extracellular matrix proteins expressed by human adult astrocytes in vivo and in vitro: an astrocyte surface protein containing the CS1 domain contributes to binding of lymphoblasts. J Neurosci Res 50:539–548

    PubMed  Google Scholar 

  88. van der Laan LJ, van der Goes A, Wauben MH, Ruuls SR, Dopp EA, De Groot CJ, Kuijpers TW, Elices MJ, Dijkstra CD (2002) Beneficial effect of modified peptide inhibitor of alpha4 integrins on experimental allergic encephalomyelitis in Lewis rats. J Neurosci Res 67:191–199

    PubMed  Google Scholar 

  89. Stuve O, Dooley NP, Uhm JH, Antel JP, Francis GS, Williams G, Yong VW (1996) Interferon beta-1b decreases the migration of T lymphocytes in vitro: effects on matrix metalloproteinase-9. Ann Neurol 40:853–863

    PubMed  CAS  Google Scholar 

  90. Kaplan RN, Riba RD, Zacharoulis S, Bramley AH, Vincent L, Costa C, MacDonald DD, Jin DK, Shido K, Kerns SA, Zhu Z, Hicklin D, Wu Y, Port JL, Altorki N, Port ER, Ruggero D, Shmelkov SV, Jensen KK, Rafii S, Lyden D (2005) VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature 438:820–827

    PubMed  CAS  Google Scholar 

  91. Malik G, Knowles LM, Dhir R, Xu S, Yang S, Ruoslahti E, Pilch J (2010) Plasma fibronectin promotes lung metastasis by contributions to fibrin clots and tumor cell invasion. Cancer Res 70:4327–4334

    PubMed  CAS  Google Scholar 

  92. Reticker-Flynn NE, Malta DF, Winslow MM, Lamar JM, Xu MJ, Underhill GH, Hynes RO, Jacks TE, Bhatia SN (2012) A combinatorial extracellular matrix platform identifies cell-extracellular matrix interactions that correlate with metastasis. Nat Commun 3:1122

    PubMed  Google Scholar 

  93. Milner R, Crocker SJ, Hung S, Wang X, Frausto RF, del Zoppo GJ (2007) Fibronectin- and vitronectin-induced microglial activation and matrix metalloproteinase-9 expression is mediated by integrins alpha5beta1 and alphavbeta5. J Immunol 178:8158–8167

    PubMed  CAS  Google Scholar 

  94. Bsibsi M, Ravid R, Gveric D, van Noort JM (2002) Broad expression of Toll-like receptors in the human central nervous system. J Neuropathol Exp Neurol 61:1013–1021

    PubMed  CAS  Google Scholar 

  95. Lehnardt S, Lachance C, Patrizi S, Lefebvre S, Follett PL, Jensen FE, Rosenberg PA, Volpe JJ, Vartanian T (2002) The toll-like receptor TLR4 is necessary for lipopolysaccharide-induced oligodendrocyte injury in the CNS. J Neurosci 22:2478–2486

    PubMed  CAS  Google Scholar 

  96. Summers L, Kielty C, Pinteaux E (2009) Adhesion to fibronectin regulates interleukin-1 beta expression in microglial cells. Mol Cell Neurosci 41:148–155

    PubMed  CAS  Google Scholar 

  97. Ribes S, Ebert S, Regen T, Czesnik D, Scheffel J, Zeug A, Bunkowski S, Eiffert H, Hanisch UK, Hammerschmidt S, Nau R (2010) Fibronectin stimulates Escherichia coli phagocytosis by microglial cells. Glia 58:367–376

    PubMed  Google Scholar 

  98. Kotter MR, Li WW, Zhao C, Franklin RJ (2006) Myelin impairs CNS remyelination by inhibiting oligodendrocyte precursor cell differentiation. J Neurosci 26:328–332

    PubMed  CAS  Google Scholar 

  99. Li WW, Setzu A, Zhao C, Franklin RJ (2005) Minocycline-mediated inhibition of microglia activation impairs oligodendrocyte progenitor cell responses and remyelination in a non-immune model of demyelination. J Neuroimmunol 158:58–66

    PubMed  CAS  Google Scholar 

  100. Setzu A, Lathia JD, Zhao C, Wells K, Rao MS, ffrench-Constant C, Franklin RJ (2006) Inflammation stimulates myelination by transplanted oligodendrocyte precursor cells. Glia 54:297–303

    PubMed  Google Scholar 

  101. Tate CC, Garcia AJ, LaPlaca MC (2007) Plasma fibronectin is neuroprotective following traumatic brain injury. Exp Neurol 207:13–22

    PubMed  CAS  Google Scholar 

  102. Lehnardt S, Massillon L, Follett P, Jensen FE, Ratan R, Rosenberg PA, Volpe JJ, Vartanian T (2003) Activation of innate immunity in the CNS triggers neurodegeneration through a Toll-like receptor 4-dependent pathway. Proc Natl Acad Sci USA 100:8514–8519

    PubMed  CAS  Google Scholar 

  103. Milner R, ffrench-Constant C (1994) A developmental analysis of oligodendroglial integrins in primary cells: changes in alpha v-associated beta subunits during differentiation. Development 120:3497–3506

    PubMed  CAS  Google Scholar 

  104. Blaschuk KL, Frost EE, ffrench-Constant C (2000) The regulation of proliferation and differentiation in oligodendrocyte progenitor cells by alphaV integrins. Development 127:1961–1969

    PubMed  CAS  Google Scholar 

  105. Zhao C, Fancy SP, Franklin RJ, ffrench-Constant C (2009) Up-regulation of oligodendrocyte precursor cell alphaV integrin and its extracellular ligands during central nervous system remyelination. J Neurosci Res 87:3447–3455

    PubMed  CAS  Google Scholar 

  106. Frost E, Kiernan BW, Faissner A, ffrench-Constant C (1996) Regulation of oligodendrocyte precursor migration by extracellular matrix: evidence for substrate-specific inhibition of migration by tenascin-C. Dev Neurosci 18:266–273

    PubMed  CAS  Google Scholar 

  107. Milner R, Edwards G, Streuli C, ffrench-Constant C (1996) A role in migration for the alpha V beta 1 integrin expressed on oligodendrocyte precursors. J Neurosci 16:7240–7252

    PubMed  CAS  Google Scholar 

  108. Baron W, Shattil SJ, ffrench-Constant C (2002) The oligodendrocyte precursor mitogen PDGF stimulates proliferation by activation of alpha(v)beta3 integrins. EMBO J 21:1957–1966

    PubMed  CAS  Google Scholar 

  109. Buttery PC, ffrench-Constant C (1999) Laminin-2/integrin interactions enhance myelin membrane formation by oligodendrocytes. Mol Cell Neurosci 14:199–212

    PubMed  CAS  Google Scholar 

  110. Siskova Z, Baron W, de Vries H, Hoekstra D (2006) Fibronectin impedes “myelin” sheet-directed flow in oligodendrocytes: a role for a beta 1 integrin-mediated PKC signaling pathway in vesicular trafficking. Mol Cell Neurosci 33:150–159

    PubMed  CAS  Google Scholar 

  111. Siskova Z, Yong VW, Nomden A, van Strien M, Hoekstra D, Baron W (2009) Fibronectin attenuates process outgrowth in oligodendrocytes by mislocalizing MMP-9 activity. Mol Cell Neurosci 42:234–242

    PubMed  CAS  Google Scholar 

  112. Zhao C, Fancy SP, Franklin RJ, ffrench-Constant C (2009) Up-regulation of oligodendrocyte precursor cell alphaV integrin and its extracellular ligands during central nervous system remyelination. J Neurosci Res 87:3447–3455

    PubMed  CAS  Google Scholar 

  113. Baron W, Decker L, Colognato H, ffrench-Constant C (2003) Regulation of integrin growth factor interactions in oligodendrocytes by lipid raft microdomains. Curr Biol 13:151–155

    PubMed  CAS  Google Scholar 

  114. Maier O, van der Heide T, van Dam AM, Baron W, de Vries H, Hoekstra D (2005) Alteration of the extracellular matrix interferes with raft association of neurofascin in oligodendrocytes. Potential significance for multiple sclerosis? Mol Cell Neurosci 28:390–401

    PubMed  CAS  Google Scholar 

  115. Singh P, Carraher C, Schwarzbauer JE (2010) Assembly of fibronectin extracellular matrix. Annu Rev Cell Dev Biol 26:397–419

    PubMed  CAS  Google Scholar 

  116. To WS, Midwood KS (2011) Plasma and cellular fibronectin: distinct and independent functions during tissue repair. Fibrogenesis Tissue Repair 4:21. doi:10.1186/1755-1536-4-21

    PubMed  CAS  Google Scholar 

  117. Chen H, Mosher DF (1996) Formation of sodium dodecyl sulfate-stable fibronectin multimers. Failure to detect products of thiol-disulfide exchange in cyanogen bromide or limited acid digests of stabilized matrix fibronectin. J Biol Chem 271:9084–9089

    PubMed  CAS  Google Scholar 

  118. Ohashi T, Erickson HP (2009) Revisiting the mystery of fibronectin multimers: the fibronectin matrix is composed of fibronectin dimers cross-linked by non-covalent bonds. Matrix Biol 28:170–175

    PubMed  CAS  Google Scholar 

  119. McKeown-Longo PJ, Mosher DF (1983) Binding of plasma fibronectin to cell layers of human skin fibroblasts. J Cell Biol 97:466–472

    PubMed  CAS  Google Scholar 

  120. Midwood KS, Williams LV, Schwarzbauer JE (2004) Tissue repair and the dynamics of the extracellular matrix. Int J Biochem Cell Biol 36:1031–1037

    PubMed  CAS  Google Scholar 

  121. Sottile J, Hocking DC (2002) Fibronectin polymerization regulates the composition and stability of extracellular matrix fibrils and cell-matrix adhesions. Mol Biol Cell 13:3546–3559

    PubMed  CAS  Google Scholar 

  122. To WS, Midwood KS (2011) Identification of novel and distinct binding sites within tenascin-C for soluble and fibrillar fibronectin. J Biol Chem 286:14881–14891

    PubMed  CAS  Google Scholar 

  123. Ohashi T, Erickson HP (2011) Fibronectin aggregation and assembly: the unfolding of the second fibronectin type III domain. J Biol Chem 286:39188–39199

    PubMed  CAS  Google Scholar 

  124. Geiger B, Bershadsky A, Pankov R, Yamada KM (2001) Transmembrane crosstalk between the extracellular matrix–cytoskeleton crosstalk. Nat Rev Mol Cell Biol 2:793–805

    PubMed  CAS  Google Scholar 

  125. Nelea V, Nakano Y, Kaartinen MT (2008) Size distribution and molecular associations of plasma fibronectin and fibronectin crosslinked by transglutaminase 2. Protein J 27:223–233

    PubMed  CAS  Google Scholar 

  126. van Strien ME, Breve JJ, Fratantoni S, Schreurs MW, Bol JG, Jongenelen CA, Drukarch B, van Dam AM (2011) Astrocyte-derived tissue transglutaminase interacts with fibronectin: a role in astrocyte adhesion and migration? PLoS ONE 6:e25037

    PubMed  Google Scholar 

  127. Dobaczewski M, Gonzalez-Quesada C, Frangogiannis NG (2010) The extracellular matrix as a modulator of the inflammatory and reparative response following myocardial infarction. J Mol Cell Cardiol 48:504–511

    PubMed  CAS  Google Scholar 

  128. Arslan F, Smeets MB, Riem Vis PW, Karper JC, Quax PH, Bongartz LG, Peters JH, Hoefer IE, Doevendans PA, Pasterkamp G, de Kleijn DP (2011) Lack of fibronectin-EDA promotes survival and prevents adverse remodeling and heart function deterioration after myocardial infarction. Circ Res 108:582–592

    PubMed  CAS  Google Scholar 

  129. Oegema TR Jr, Johnson SL, Aguiar DJ, Ogilvie JW (2000) Fibronectin and its fragments increase with degeneration in the human intervertebral disc. Spine (Phila Pa 1976) 25:2742–2747

    Google Scholar 

  130. Greg Anderson D, Li X, Tannoury T, Beck G, Balian G (2003) A fibronectin fragment stimulates intervertebral disc degeneration in vivo. Spine (Phila Pa 1976) 28:2338–2345

    CAS  Google Scholar 

  131. Xia M, Zhu Y (2011) Fibronectin fragment activation of ERK increasing integrin alpha and beta subunit expression to degenerate nucleus pulposus cells. J Orthop Res 29:556–561

    PubMed  CAS  Google Scholar 

  132. Lu P, Takai K, Weaver VM and Werb Z (2011) Extracellular matrix degradation and remodeling in development and disease. Cold Spring Harb Perspect Biol 3. doi: 10.1101/cshperspect.a005058

  133. Chowdhury TT, Schulz RM, Rai SS, Thuemmler CB, Wuestneck N, Bader A, Homandberg GA (2010) Biomechanical modulation of collagen fragment-induced anabolic and catabolic activities in chondrocyte/agarose constructs. Arthr Res Ther 12:R82

    Google Scholar 

  134. Goh FG, Piccinini AM, Krausgruber T, Udalova IA, Midwood KS (2010) Transcriptional regulation of the endogenous danger signal tenascin-C: a novel autocrine loop in inflammation. J Immunol 184:2655–2662

    PubMed  CAS  Google Scholar 

  135. Back SA, Tuohy TM, Chen H, Wallingford N, Craig A, Struve J, Luo NL, Banine F, Liu Y, Chang A, Trapp BD, Bebo BF Jr, Rao MS, Sherman LS (2005) Hyaluronan accumulates in demyelinated lesions and inhibits oligodendrocyte progenitor maturation. Nat Med 11:966–972

    PubMed  CAS  Google Scholar 

  136. Livant DL, Brabec RK, Kurachi K, Allen DL, Wu Y, Haaseth R, Andrews P, Ethier SP, Markwart S (2000) The PHSRN sequence induces extracellular matrix invasion and accelerates wound healing in obese diabetic mice. J Clin Invest 105:1537–1545

    PubMed  CAS  Google Scholar 

  137. Miyamoto T, Tamura M, Kabashima N, Serino R, Shibata T, Furuno Y, Miyazaki M, Baba R, Sato N, Doi Y, Okazaki M, Otsuji Y (2010) An integrin-activating peptide, PHSRN, ameliorates inhibitory effects of conventional peritoneal dialysis fluids on peritoneal wound healing. Nephrol Dial Transplant 25:1109–1119

    PubMed  CAS  Google Scholar 

  138. Feng Y, Mrksich M (2004) The synergy peptide PHSRN and the adhesion peptide RGD mediate cell adhesion through a common mechanism. Biochemistry 43:15811–15821

    PubMed  CAS  Google Scholar 

  139. Zeng ZZ, Yao H, Staszewski ED, Rockwood KF, Markwart SM, Fay KS, Spalding AC, Livant DL (2009) Alpha(5)beta(1) integrin ligand PHSRN induces invasion and alpha(5) mRNA in endothelial cells to stimulate angiogenesis. Transl Oncol 2:8–20

    PubMed  Google Scholar 

  140. Lariviere B, Rouleau M, Picard S, Beaulieu AD (2003) Human plasma fibronectin potentiates the mitogenic activity of platelet-derived growth factor and complements its wound healing effects. Wound Repair Regen 11:79–89

    PubMed  Google Scholar 

  141. Qiu Z, Kwon AH, Kamiyama Y (2007) Effects of plasma fibronectin on the healing of full-thickness skin wounds in streptozotocin-induced diabetic rats. J Surg Res 138:64–70

    PubMed  CAS  Google Scholar 

  142. Kwon AH, Qiu Z, Hiraon Y (2007) Effect of plasma fibronectin on the incisional wound healing in rats. Surgery 141:254–261

    PubMed  Google Scholar 

  143. McCulley JP, Horowitz B, Husseini ZM, Horowitz M (1993) Topical fibronectin therapy of persistent corneal epithelial defects. Fibronectin Study Group. Trans Am Ophthalmol Soc 91:367–386 (discussion 386–90)

    PubMed  CAS  Google Scholar 

  144. Boateng JS, Matthews KH, Stevens HN, Eccleston GM (2008) Wound healing dressings and drug delivery systems: a review. J Pharm Sci 97:2892–2923

    PubMed  CAS  Google Scholar 

  145. Ghosh K, Ren XD, Shu XZ, Prestwich GD, Clark RA (2006) Fibronectin functional domains coupled to hyaluronan stimulate adult human dermal fibroblast responses critical for wound healing. Tissue Eng 12:601–613

    PubMed  CAS  Google Scholar 

  146. Okiyama N, Kitajima T, Ito Y, Yokozeki H, Miyasaka N, Kohsaka H (2011) Addition of the collagen binding domain of fibronectin potentiates the biochemical availability of hepatocyte growth factor for cutaneous wound healing. J Dermatol Sci 61:215–217

    PubMed  CAS  Google Scholar 

  147. Hamed S, Ullmann Y, Egozi D, Daod E, Hellou E, Ashkar M, Gilhar A, Teot L (2011) Fibronectin potentiates topical erythropoietin-induced wound repair in diabetic mice. J Invest Dermatol 131:1365–1374

    PubMed  CAS  Google Scholar 

  148. Martino MM, Tortelli F, Mochizuki M, Traub S, Ben-David D, Kuhn GA, Muller R, Livne E, Eming SA, Hubbell JA (2011) Engineering the growth factor microenvironment with fibronectin domains to promote wound and bone tissue healing. Sci Transl Med 3:100ra89

    PubMed  Google Scholar 

  149. Schwarzbauer JE and DeSimone DW (2011) Fibronectins, their fibrillogenesis, and in vivo functions. Cold Spring Harb Perspect Biol 3. doi: 10.1101/cshperspect.a005041

Download references

Acknowledgments

Work in the Baron Laboratory is supported by grants from the Netherlands Foundation for the Support of MS Research (Stichting MS Research), and the Netherlands Organization of Scientific Research NWO (VIDI and Aspasia).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wia Baron.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stoffels, J.M.J., Zhao, C. & Baron, W. Fibronectin in tissue regeneration: timely disassembly of the scaffold is necessary to complete the build. Cell. Mol. Life Sci. 70, 4243–4253 (2013). https://doi.org/10.1007/s00018-013-1350-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-013-1350-0

Keywords

Navigation