Skip to main content
Log in

Macro domains as metabolite sensors on chromatin

  • Multi-author review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

How metabolism and epigenetics are molecularly linked and regulate each other is poorly understood. In this review, we will discuss the role of direct metabolite-binding to chromatin components and modifiers as a possible regulatory mechanism. We will focus on globular macro domains, which are evolutionarily highly conserved protein folds that can recognize NAD+-derived metabolites. Macro domains are found in histone variants, histone modifiers, and a chromatin remodeler among other proteins. Here we summarize the macro domain-containing chromatin proteins and the enzymes that generate relevant metabolites. Focusing on the histone variant macroH2A, we further discuss possible implications of metabolite binding for chromatin function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Goldberg AD, Allis CD, Bernstein E (2007) Epigenetics: a landscape takes shape. Cell 128(4):635–638. doi:10.1016/j.cell.2007.02.006

    Article  PubMed  CAS  Google Scholar 

  2. Kouzarides T (2007) Chromatin modifications and their function. Cell 128(4):693–705

    Article  PubMed  CAS  Google Scholar 

  3. Berg JM, Tymoczko JL, Stryer L (2011) Biochemistry: international edition, 7th edn. Palgrave Macmillan, Basingstoke

    Google Scholar 

  4. Chiacchiera F, Piunti A, Pasini D (2012) Epigenetic methylations and their connections with metabolism. Cell Mol Life Sci. doi:10.1007/s00018-013-1293-5

  5. Murayama A, Ohmori K, Fujimura A, Minami H, Yasuzawa-Tanaka K, Kuroda T, Oie S, Daitoku H, Okuwaki M, Nagata K, Fukamizu A, Kimura K, Shimizu T, Yanagisawa J (2008) Epigenetic control of rDNA loci in response to intracellular energy status. Cell 133(4):627–639. doi:10.1016/j.cell.2008.03.030

    Article  PubMed  CAS  Google Scholar 

  6. Cosentino C, Mostolavsky R (2012) Metabolism, longevity and epigenetics. Cell Mol Life Sci. doi:10.1007/s00018-013-1295-3

  7. Karras GI, Kustatscher G, Buhecha HR, Allen MD, Pugieux C, Sait F, Bycroft M, Ladurner AG (2005) The macro domain is an ADP-ribose binding module. EMBO J 24(11):1911–1920

    Article  PubMed  CAS  Google Scholar 

  8. Kustatscher G, Hothorn M, Pugieux C, Scheffzek K, Ladurner AG (2005) Splicing regulates NAD metabolite binding to histone macroH2A. Nat Struct Mol Biol 12(7):624–625

    Article  PubMed  CAS  Google Scholar 

  9. Timinszky G, Till S, Hassa PO, Hothorn M, Kustatscher G, Nijmeijer B, Colombelli J, Altmeyer M, Stelzer EH, Scheffzek K, Hottiger MO, Ladurner AG (2009) A macrodomain-containing histone rearranges chromatin upon sensing PARP1 activation. Nat Struct Mol Biol 16(9):923–929. doi:10.1038/nsmb.1664

    Article  PubMed  CAS  Google Scholar 

  10. Pehrson JR, Fried VA (1992) MacroH2A, a core histone containing a large nonhistone region. Science 257(5075):1398–1400

    Article  PubMed  CAS  Google Scholar 

  11. Till S, Ladurner AG (2009) Sensing NAD metabolites through macro domains. Front Biosci 14:3246–3258 (pii 3448)

    Article  PubMed  CAS  Google Scholar 

  12. Han W, Li X, Fu X (2011) The macro domain protein family: structure, functions, and their potential therapeutic implications. Mutat Res 727(3):86–103. doi:10.1016/j.mrrev.2011.03.001

    Article  PubMed  CAS  Google Scholar 

  13. Allen MD, Buckle AM, Cordell SC, Lowe J, Bycroft M (2003) The crystal structure of AF1521 a protein from Archaeoglobus fulgidus with homology to the non-histone domain of macroH2A. J Mol Biol 330(3):503–511

    Article  PubMed  CAS  Google Scholar 

  14. Ahel D, Horejsi Z, Wiechens N, Polo SE, Garcia-Wilson E, Ahel I, Flynn H, Skehel M, West SC, Jackson SP, Owen-Hughes T, Boulton SJ (2009) Poly (ADP-ribose)-dependent regulation of DNA repair by the chromatin remodeling enzyme ALC1. Science 325(5945):1240–1243. doi:10.1126/science.1177321

    Article  PubMed  CAS  Google Scholar 

  15. Gottschalk AJ, Timinszky G, Kong SE, Jin J, Cai Y, Swanson SK, Washburn MP, Florens L, Ladurner AG, Conaway JW, Conaway RC (2009) Poly (ADP-ribosyl) ation directs recruitment and activation of an ATP-dependent chromatin remodeler. Proc Natl Acad Sci USA 106(33):13770–13774. doi:10.1073/pnas.0906920106

    Article  PubMed  CAS  Google Scholar 

  16. Neuvonen M, Ahola T (2009) Differential activities of cellular and viral macro domain proteins in binding of ADP-ribose metabolites. J Mol Biol 385(1):212–225. doi:10.1016/j.jmb.2008.10.045

    Article  PubMed  CAS  Google Scholar 

  17. Peterson FC, Chen D, Lytle BL, Rossi MN, Ahel I, Denu JM, Volkman BF (2011) Orphan macrodomain protein (human C6orf130) is an O-acyl-ADP-ribose deacylase: solution structure and catalytic properties. J Biol Chem 286(41):35955–35965. doi:10.1074/jbc.M111.276238

    Article  PubMed  CAS  Google Scholar 

  18. Chen D, Vollmar M, Rossi MN, Phillips C, Kraehenbuehl R, Slade D, Mehrotra PV, von Delft F, Crosthwaite SK, Gileadi O, Denu JM, Ahel I (2011) Identification of macrodomain proteins as novel O-acetyl-ADP-ribose deacetylases. J Biol Chem 286(15):13261–13271. doi:10.1074/jbc.M110.206771

    Article  PubMed  CAS  Google Scholar 

  19. Kim IK, Kiefer JR, Ho CM, Stegeman RA, Classen S, Tainer JA, Ellenberger T (2012) Structure of mammalian poly (ADP-ribose) glycohydrolase reveals a flexible tyrosine clasp as a substrate-binding element. Nat Struct Mol Biol 19(6):653–656. doi:10.1038/nsmb.2305

    Article  PubMed  CAS  Google Scholar 

  20. Slade D, Dunstan MS, Barkauskaite E, Weston R, Lafite P, Dixon N, Ahel M, Leys D, Ahel I (2011) The structure and catalytic mechanism of a poly (ADP-ribose) glycohydrolase. Nature 477(7366):616–620. doi:10.1038/nature10404

    Article  PubMed  CAS  Google Scholar 

  21. Dani N, Stilla A, Marchegiani A, Tamburro A, Till S, Ladurner AG, Corda D, Di Girolamo M (2009) Combining affinity purification by ADP-ribose-binding macro domains with mass spectrometry to define the mammalian ADP-ribosyl proteome. Proc Natl Acad Sci USA 106(11):4243–4248. doi:10.1073/pnas.0900066106

    Article  PubMed  CAS  Google Scholar 

  22. Martzen MR, McCraith SM, Spinelli SL, Torres FM, Fields S, Grayhack EJ, Phizicky EM (1999) A biochemical genomics approach for identifying genes by the activity of their products. Science 286(5442):1153–1155

    Article  PubMed  CAS  Google Scholar 

  23. Dunstan MS, Barkauskaite E, Lafite P, Knezevic CE, Brassington A, Ahel M, Hergenrother PJ, Leys D, Ahel I (2012) Structure and mechanism of a canonical poly (ADP-ribose) glycohydrolase. Nature Comm 3:878. doi:10.1038/ncomms1889

    Article  CAS  Google Scholar 

  24. Warburg O, Christian W, Griese A (1935) Wasserstoffuebertragendes Co-Ferment, seine Zusammensetzung und Wirkungsweise. Biochem Z 282:157–165

    CAS  Google Scholar 

  25. Houtkooper RH, Canto C, Wanders RJ, Auwerx J (2010) The secret life of NAD+: an old metabolite controlling new metabolic signaling pathways. Endocr Rev 31(2):194–223. doi:10.1210/er.2009-0026

    Article  PubMed  CAS  Google Scholar 

  26. Schreiber V, Dantzer F, Ame JC, de Murcia G (2006) Poly (ADP-ribose): novel functions for an old molecule. Nat Rev Mol Cell Biol 7(7):517–528. doi:10.1038/nrm1963

    Article  PubMed  CAS  Google Scholar 

  27. Quenet D, El Ramy R, Schreiber V, Dantzer F (2009) The role of poly (ADP-ribosyl) ation in epigenetic events. Int J Biochem Cell Biol 41(1):60–65. doi:10.1016/j.biocel.2008.07.023

    Article  PubMed  CAS  Google Scholar 

  28. Gibson BA, Kraus WL (2012) New insights into the molecular and cellular functions of poly (ADP-ribose) and PARPs. Nat Rev Mol Cell Biol 13(7):411–424. doi:10.1038/nrm3376

    Article  PubMed  CAS  Google Scholar 

  29. Luo X, Kraus WL (2012) On PAR with PARP: cellular stress signaling through poly (ADP-ribose) and PARP-1. Genes Dev 26(5):417–432. doi:10.1101/gad.183509.111

    Article  PubMed  CAS  Google Scholar 

  30. Szanto M, Brunyanszki A, Kiss B, Nagy L, Gergely P, Virag L, Bai P (2012) Poly (ADP-ribose) polymerase-2: emerging transcriptional roles of a DNA-repair protein. Cell Mol Life Sci. doi:10.1007/s00018-012-1003-8

    PubMed  Google Scholar 

  31. Wright RH, Castellano G, Bonet J, Le Dily F, Font-Mateu J, Ballare C, Nacht AS, Soronellas D, Oliva B, Beato M (2012) CDK2-dependent activation of PARP-1 is required for hormonal gene regulation in breast cancer cells. Genes Dev 26(17):1972–1983. doi:10.1101/gad.193193.112

    Article  PubMed  CAS  Google Scholar 

  32. Krishnakumar R, Kraus WL (2010) The PARP side of the nucleus: molecular actions, physiological outcomes, and clinical targets. Mol Cell 39(1):8–24. doi:10.1016/j.molcel.2010.06.017

    Article  PubMed  CAS  Google Scholar 

  33. Kalisch T, Ame JC, Dantzer F, Schreiber V (2012) New readers and interpretations of poly (ADP-ribosyl) ation. Trends Biochem Sci. doi:10.1016/j.tibs.2012.06.001

    PubMed  Google Scholar 

  34. Farmer H, McCabe N, Lord CJ, Tutt AN, Johnson DA, Richardson TB, Santarosa M, Dillon KJ, Hickson I, Knights C, Martin NM, Jackson SP, Smith GC, Ashworth A (2005) Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature 434(7035):917–921. doi:10.1038/nature03445

    Article  PubMed  CAS  Google Scholar 

  35. Lord CJ, Ashworth A (2008) Targeted therapy for cancer using PARP inhibitors. Curr Opin Pharmacol 8(4):363–369. doi:10.1016/j.coph.2008.06.016

    Article  PubMed  CAS  Google Scholar 

  36. de Murcia JM, Niedergang C, Trucco C, Ricoul M, Dutrillaux B, Mark M, Oliver FJ, Masson M, Dierich A, LeMeur M, Walztinger C, Chambon P, de Murcia G (1997) Requirement of poly (ADP-ribose) polymerase in recovery from DNA damage in mice and in cells. Proc Natl Acad Sci USA 94(14):7303–7307

    Article  PubMed  Google Scholar 

  37. Wang ZQ, Stingl L, Morrison C, Jantsch M, Los M, Schulze-Osthoff K, Wagner EF (1997) PARP is important for genomic stability but dispensable in apoptosis. Genes Dev 11(18):2347–2358

    Article  PubMed  CAS  Google Scholar 

  38. Witt O, Deubzer HE, Milde T, Oehme I (2009) HDAC family: what are the cancer relevant targets? Cancer Lett 277(1):8–21. doi:10.1016/j.canlet.2008.08.016

    Article  PubMed  CAS  Google Scholar 

  39. Houtkooper RH, Pirinen E, Auwerx J (2012) Sirtuins as regulators of metabolism and healthspan. Nat Rev Mol Cell Biol 13(4):225–238. doi:10.1038/nrm3293

    PubMed  CAS  Google Scholar 

  40. Lagouge M, Argmann C, Gerhart-Hines Z, Meziane H, Lerin C, Daussin F, Messadeq N, Milne J, Lambert P, Elliott P, Geny B, Laakso M, Puigserver P, Auwerx J (2006) Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1alpha. Cell 127(6):1109–1122. doi:10.1016/j.cell.2006.11.013

    Article  PubMed  CAS  Google Scholar 

  41. Vaquero A, Sternglanz R, Reinberg D (2007) NAD+-dependent deacetylation of H4 lysine 16 by class III HDACs. Oncogene 26(37):5505–5520. doi:10.1038/sj.onc.1210617

    Article  PubMed  CAS  Google Scholar 

  42. Vaquero A, Scher M, Erdjument-Bromage H, Tempst P, Serrano L, Reinberg D (2007) SIRT1 regulates the histone methyl-transferase SUV39H1 during heterochromatin formation. Nature 450(7168):440–444. doi:10.1038/nature06268

    Article  PubMed  CAS  Google Scholar 

  43. Finkel T, Deng CX, Mostoslavsky R (2009) Recent progress in the biology and physiology of sirtuins. Nature 460(7255):587–591. doi:10.1038/nature08197

    Article  PubMed  CAS  Google Scholar 

  44. Vaquero A, Scher MB, Lee DH, Sutton A, Cheng HL, Alt FW, Serrano L, Sternglanz R, Reinberg D (2006) SirT2 is a histone deacetylase with preference for histone H4 Lys 16 during mitosis. Genes Dev 20(10):1256–1261. doi:10.1101/gad.1412706

    Article  PubMed  CAS  Google Scholar 

  45. Kim HS, Vassilopoulos A, Wang RH, Lahusen T, Xiao Z, Xu X, Li C, Veenstra TD, Li B, Yu H, Ji J, Wang XW, Park SH, Cha YI, Gius D, Deng CX (2011) SIRT2 maintains genome integrity and suppresses tumorigenesis through regulating APC/C activity. Cancer Cell 20(4):487–499. doi:10.1016/j.ccr.2011.09.004

    Article  PubMed  CAS  Google Scholar 

  46. Bosch-Presegue L, Vaquero A (2011) The dual role of sirtuins in cancer. Genes Cancer 2(6):648–662. doi:10.1177/1947601911417862

    Article  PubMed  CAS  Google Scholar 

  47. Barber MF, Michishita-Kioi E, Xi Y, Tasselli L, Kioi M, Moqtaderi Z, Tennen RI, Paredes S, Young NL, Chen K, Struhl K, Garcia BA, Gozani O, Li W, Chua KF (2012) SIRT7 links H3K18 deacetylation to maintenance of oncogenic transformation. Nature 487(7405):114–118. doi:10.1038/nature11043

    PubMed  CAS  Google Scholar 

  48. Aguiar RC, Takeyama K, He C, Kreinbrink K, Shipp MA (2005) B-aggressive lymphoma family proteins have unique domains that modulate transcription and exhibit poly (ADP-ribose) polymerase activity. J Biol Chem 280(40):33756–33765. doi:10.1074/jbc.M505408200

    Article  PubMed  CAS  Google Scholar 

  49. Aguiar RC, Yakushijin Y, Kharbanda S, Salgia R, Fletcher JA, Shipp MA (2000) BAL is a novel risk-related gene in diffuse large B-cell lymphomas that enhances cellular migration. Blood 96(13):4328–4334

    PubMed  CAS  Google Scholar 

  50. Nagase T, Ishikawa K, Kikuno R, Hirosawa M, Nomura N, Ohara O (1999) Prediction of the coding sequences of unidentified human genes. XV. The complete sequences of 100 new cDNA clones from brain which code for large proteins in vitro. DNA Res 6(5):337–345

    Article  PubMed  CAS  Google Scholar 

  51. Juszczynski P, Kutok JL, Li C, Mitra J, Aguiar RC, Shipp MA (2006) BAL1 and BBAP are regulated by a gamma interferon-responsive bidirectional promoter and are overexpressed in diffuse large B-cell lymphomas with a prominent inflammatory infiltrate. Mol Cell Biol 26(14):5348–5359. doi:10.1128/MCB.02351-05

    Article  PubMed  CAS  Google Scholar 

  52. Goenka S, Boothby M (2006) Selective potentiation of Stat-dependent gene expression by collaborator of Stat6 (CoaSt6), a transcriptional cofactor. Proc Natl Acad Sci USA 103(11):4210–4215. doi:10.1073/pnas.0506981103

    Article  PubMed  CAS  Google Scholar 

  53. Mehrotra P, Riley JP, Patel R, Li F, Voss L, Goenka S (2011) PARP-14 functions as a transcriptional switch for Stat6-dependent gene activation. J Biol Chem 286(3):1767–1776. doi:10.1074/jbc.M110.157768

    Article  PubMed  CAS  Google Scholar 

  54. Cho SH, Ahn AK, Bhargava P, Lee CH, Eischen CM, McGuinness O, Boothby M (2011) Glycolytic rate and lymphomagenesis depend on PARP14, an ADP ribosyltransferase of the B aggressive lymphoma (BAL) family. Proc Natl Acad Sci USA 108(38):15972–15977. doi:10.1073/pnas.1017082108

    Article  PubMed  CAS  Google Scholar 

  55. Cho SH, Goenka S, Henttinen T, Gudapati P, Reinikainen A, Eischen CM, Lahesmaa R, Boothby M (2009) PARP-14, a member of the B aggressive lymphoma family, transduces survival signals in primary B cells. Blood 113(11):2416–2425. doi:10.1182/blood-2008-03-144121

    Article  PubMed  CAS  Google Scholar 

  56. Yanagawa T, Funasaka T, Tsutsumi S, Hu H, Watanabe H, Raz A (2007) Regulation of phosphoglucose isomerase/autocrine motility factor activities by the poly (ADP-ribose) polymerase family-14. Cancer Res 67(18):8682–8689. doi:10.1158/0008-5472.CAN-07-1586

    Article  PubMed  CAS  Google Scholar 

  57. Hakme A, Huber A, Dolle P, Schreiber V (2008) The macroPARP genes Parp-9 and Parp-14 are developmentally and differentially regulated in mouse tissues. Dev Dyn 237(1):209–215. doi:10.1002/dvdy.21399

    Article  PubMed  CAS  Google Scholar 

  58. Leung AK, Vyas S, Rood JE, Bhutkar A, Sharp PA, Chang P (2011) Poly (ADP-ribose) regulates stress responses and microRNA activity in the cytoplasm. Mol Cell 42(4):489–499. doi:10.1016/j.molcel.2011.04.015

    Article  PubMed  CAS  Google Scholar 

  59. Meyer-Ficca ML, Meyer RG, Coyle DL, Jacobson EL, Jacobson MK (2004) Human poly (ADP-ribose) glycohydrolase is expressed in alternative splice variants yielding isoforms that localize to different cell compartments. Exp Cell Res 297(2):521–532. doi:10.1016/j.yexcr.2004.03.050

    Article  PubMed  CAS  Google Scholar 

  60. Cortes U, Tong WM, Coyle DL, Meyer-Ficca ML, Meyer RG, Petrilli V, Herceg Z, Jacobson EL, Jacobson MK, Wang ZQ (2004) Depletion of the 110-kilodalton isoform of poly (ADP-ribose) glycohydrolase increases sensitivity to genotoxic and endotoxic stress in mice. Mol Cell Biol 24(16):7163–7178. doi:10.1128/MCB.24.16.7163-7178.2004

    Article  PubMed  CAS  Google Scholar 

  61. Di Meglio S, Denegri M, Vallefuoco S, Tramontano F, Scovassi AI, Quesada P (2003) Poly (ADPR) polymerase-1 and poly (ADPR) glycohydrolase level and distribution in differentiating rat germinal cells. Mol Cell Biochem 248(1–2):85–91

    Article  PubMed  Google Scholar 

  62. Koh DW, Lawler AM, Poitras MF, Sasaki M, Wattler S, Nehls MC, Stoger T, Poirier GG, Dawson VL, Dawson TM (2004) Failure to degrade poly (ADP-ribose) causes increased sensitivity to cytotoxicity and early embryonic lethality. Proc Natl Acad Sci USA 101(51):17699–17704. doi:10.1073/pnas.0406182101

    Article  PubMed  CAS  Google Scholar 

  63. Oka S, Kato J, Moss J (2006) Identification and characterization of a mammalian 39-kDa poly (ADP-ribose) glycohydrolase. J Biol Chem 281(2):705–713. doi:10.1074/jbc.M510290200

    Article  PubMed  CAS  Google Scholar 

  64. Ono T, Kasamatsu A, Oka S, Moss J (2006) The 39-kDa poly (ADP-ribose) glycohydrolase ARH3 hydrolyzes O-acetyl-ADP-ribose, a product of the Sir2 family of acetyl-histone deacetylases. Proc Natl Acad Sci USA 103(45):16687–16691. doi:10.1073/pnas.0607911103

    Article  PubMed  CAS  Google Scholar 

  65. Mueller-Dieckmann C, Kernstock S, Lisurek M, von Kries JP, Haag F, Weiss MS, Koch-Nolte F (2006) The structure of human ADP-ribosylhydrolase 3 (ARH3) provides insights into the reversibility of protein ADP-ribosylation. Proc Natl Acad Sci USA 103(41):15026–15031. doi:10.1073/pnas.0606762103

    Article  PubMed  CAS  Google Scholar 

  66. Zha M, Guo Q, Zhang Y, Yu B, Ou Y, Zhong C, Ding J (2008) Molecular mechanism of ADP-ribose hydrolysis by human NUDT5 from structural and kinetic studies. J Mol Biol 379(3):568–578. doi:10.1016/j.jmb.2008.04.006

    Article  PubMed  CAS  Google Scholar 

  67. Hopfner KP, Gerhold CB, Lakomek K, Wollmann P (2012) Swi2/Snf2 remodelers: hybrid views on hybrid molecular machines. Curr Opin Struct Biol 22(2):225–233. doi:10.1016/j.sbi.2012.02.007

    Article  PubMed  CAS  Google Scholar 

  68. Flaus A, Owen-Hughes T (2011) Mechanisms for ATP-dependent chromatin remodelling: the means to the end. FEBS J 278(19):3579–3595. doi:10.1111/j.1742-4658.2011.08281.x

    Article  PubMed  Google Scholar 

  69. Ryan DP, Sundaramoorthy R, Martin D, Singh V, Owen-Hughes T (2011) The DNA-binding domain of the Chd1 chromatin-remodelling enzyme contains SANT and SLIDE domains. EMBO J 30(13):2596–2609. doi:10.1038/emboj.2011.166

    Article  PubMed  CAS  Google Scholar 

  70. Wilson BG, Roberts CW (2011) SWI/SNF nucleosome remodellers and cancer. Nat Rev Cancer 11(7):481–492. doi:10.1038/nrc3068

    Article  PubMed  CAS  Google Scholar 

  71. Pines A, Vrouwe MG, Marteijn JA, Typas D, Luijsterburg MS, Cansoy M, Hensbergen P, Deelder A, de Groot A, Matsumoto S, Sugasawa K, Thoma N, Vermeulen W, Vrieling H, Mullenders L (2012) PARP1 promotes nucleotide excision repair through DDB2 stabilization and recruitment of ALC1. J Cell Biol 199(2):235–249. doi:10.1083/jcb.201112132

    Article  PubMed  CAS  Google Scholar 

  72. Ma NF, Hu L, Fung JM, Xie D, Zheng BJ, Chen L, Tang DJ, Fu L, Wu Z, Chen M, Fang Y, Guan XY (2008) Isolation and characterization of a novel oncogene, amplified in liver cancer 1, within a commonly amplified region at 1q21 in hepatocellular carcinoma. Hepatology 47(2):503–510. doi:10.1002/hep.22072

    Article  PubMed  CAS  Google Scholar 

  73. Marchio A, Meddeb M, Pineau P, Danglot G, Tiollais P, Bernheim A, Dejean A (1997) Recurrent chromosomal abnormalities in hepatocellular carcinoma detected by comparative genomic hybridization. Genes Chromosom Cancer 18(1):59–65

    Article  PubMed  CAS  Google Scholar 

  74. Chen L, Chan TH, Yuan YF, Hu L, Huang J, Ma S, Wang J, Dong SS, Tang KH, Xie D, Li Y, Guan XY (2010) CHD1L promotes hepatocellular carcinoma progression and metastasis in mice and is associated with these processes in human patients. J Clin Investig 120(4):1178–1191. doi:10.1172/JCI40665

    Article  PubMed  CAS  Google Scholar 

  75. Chen M, Huang JD, Hu L, Zheng BJ, Chen L, Tsang SL, Guan XY (2009) Transgenic CHD1L expression in mouse induces spontaneous tumors. PLoS One 4(8):e6727. doi:10.1371/journal.pone.0006727

    Article  PubMed  CAS  Google Scholar 

  76. Brockschmidt A, Chung B, Weber S, Fischer DC, Kolatsi-Joannou M, Christ L, Heimbach A, Shtiza D, Klaus G, Simonetti GD, Konrad M, Winyard P, Haffner D, Schaefer F, Weber RG (2012) CHD1L: a new candidate gene for congenital anomalies of the kidneys and urinary tract (CAKUT). Nephrol Dial Transpl 27(6):2355–2364. doi:10.1093/ndt/gfr649

    Article  CAS  Google Scholar 

  77. Gottschalk AJ, Trivedi RD, Conaway JW, Conaway RC (2012) Activation of the SNF2 family ATPase ALC1 by poly (ADP-ribose) in a stable nucleosome-PARP1-ALC1 intermediate. J Biol Chem. doi:10.1074/jbc.M112.401141

    PubMed  Google Scholar 

  78. Sala A, La Rocca G, Burgio G, Kotova E, Di Gesu D, Collesano M, Ingrassia AM, Tulin AV, Corona DF (2008) The nucleosome-remodeling ATPase ISWI is regulated by poly-ADP-ribosylation. PLoS Biol 6(10):e252. doi:10.1371/journal.pbio.0060252

    Article  PubMed  CAS  Google Scholar 

  79. Chou DM, Adamson B, Dephoure NE, Tan X, Nottke AC, Hurov KE, Gygi SP, Colaiacovo MP, Elledge SJ (2010) A chromatin localization screen reveals poly (ADP ribose)-regulated recruitment of the repressive Polycomb and NuRD complexes to sites of DNA damage. Proc Natl Acad Sci USA 107(43):18475–18480. doi:10.1073/pnas.1012946107

    Article  PubMed  CAS  Google Scholar 

  80. Chan TH, Chen L, Liu M, Hu L, Zheng BJ, Poon VK, Huang P, Yuan YF, Huang JD, Yang J, Tsao GS, Guan XY (2012) Translationally controlled tumor protein induces mitotic defects and chromosome missegregation in hepatocellular carcinoma development. Hepatology 55(2):491–505. doi:10.1002/hep.24709

    Article  PubMed  CAS  Google Scholar 

  81. Han WD, Mu YM, Lu XC, Xu ZM, Li XJ, Yu L, Song HJ, Li M, Lu JM, Zhao YL, Pan CY (2003) Up-regulation of LRP16 mRNA by 17beta-estradiol through activation of estrogen receptor alpha (ERalpha), but not ERbeta, and promotion of human breast cancer MCF-7 cell proliferation: a preliminary report. Endocr Relat Cancer 10(2):217–224

    Article  PubMed  CAS  Google Scholar 

  82. Maas NM, Van de Putte T, Melotte C, Francis A, Schrander-Stumpel CT, Sanlaville D, Genevieve D, Lyonnet S, Dimitrov B, Devriendt K, Fryns JP, Vermeesch JR (2007) The C20orf133 gene is disrupted in a patient with Kabuki syndrome. J Med Genet 44(9):562–569. doi:10.1136/jmg.2007.049510

    Article  PubMed  CAS  Google Scholar 

  83. Maas NM, Van de Putte T, Melotte C, Francis A, Schrander-Stumpel CT, Sanlaville D, Genevieve D, Lyonnet S, Dimitrov B, Devriendt K, Fryns JP, Vermeesch JR (2009) The C20orf133 gene is disrupted in a patient with Kabuki syndrome. BMJ Case Rep doi:10.1136/bcr.06.2009.1994

  84. Yang J, Zhao YL, Wu ZQ, Si YL, Meng YG, Fu XB, Mu YM, Han WD (2009) The single-macro domain protein LRP16 is an essential cofactor of androgen receptor. Endocr Relat Cancer 16(1):139–153. doi:10.1677/ERC-08-0150

    Article  PubMed  CAS  Google Scholar 

  85. Han WD, Zhao YL, Meng YG, Zang L, Wu ZQ, Li Q, Si YL, Huang K, Ba JM, Morinaga H, Nomura M, Mu YM (2007) Estrogenically regulated LRP16 interacts with estrogen receptor alpha and enhances the receptor’s transcriptional activity. Endocr Relat Cancer 14(3):741–753. doi:10.1677/ERC-06-0082

    Article  PubMed  CAS  Google Scholar 

  86. Chakravarthy S, Gundimella SK, Caron C, Perche PY, Pehrson JR, Khochbin S, Luger K (2005) Structural characterization of the histone variant macroH2A. Mol Cell Biol 25(17):7616–7624

    Article  PubMed  CAS  Google Scholar 

  87. Chadwick BP, Willard HF (2001) Histone H2A variants and the inactive X chromosome: identification of a second macroH2A variant. Hum Mol Genet 10(10):1101–1113

    Article  PubMed  CAS  Google Scholar 

  88. Pehrson JR, Fuji RN (1998) Evolutionary conservation of histone macroH2A subtypes and domains. Nucleic Acids Res 26(12):2837–2842

    Article  PubMed  CAS  Google Scholar 

  89. Costanzi C, Pehrson JR (2001) MACROH2A2, a new member of the MARCOH2A core histone family. J Biol Chem 276(24):21776–21784. doi:10.1074/jbc.M010919200

    Article  PubMed  CAS  Google Scholar 

  90. Rasmussen TP, Huang T, Mastrangelo MA, Loring J, Panning B, Jaenisch R (1999) Messenger RNAs encoding mouse histone macroH2A1 isoforms are expressed at similar levels in male and female cells and result from alternative splicing. Nucleic Acids Res 27(18):3685–3689. doi:gkc540

    Article  PubMed  CAS  Google Scholar 

  91. Chakravarthy S, Luger K (2006) The histone variant macro-H2A preferentially forms “hybrid nucleosomes”. J Biol Chem 281(35):25522–25531. doi:10.1074/jbc.M602258200

    Article  PubMed  CAS  Google Scholar 

  92. Buschbeck M, Di Croce L (2010) Approaching the molecular and physiological function of macroH2A variants. Epigenetics 5(2) (pii 11076)

  93. Chakravarthy S, Patel A, Bowman GD (2012) The basic linker of macroH2A stabilizes DNA at the entry/exit site of the nucleosome. Nucleic Acids Res. doi:10.1093/nar/gks645

    Google Scholar 

  94. Muthurajan UM, McBryant SJ, Lu X, Hansen JC, Luger K (2011) The linker region of macroH2A promotes self-association of nucleosomal arrays. J Biol Chem 286(27):23852–23864. doi:10.1074/jbc.M111.244871

    Article  PubMed  CAS  Google Scholar 

  95. Bonisch C, Hake SB (2012) Histone H2A variants in nucleosomes and chromatin: more or less stable? Nucleic Acids Res. doi:10.1093/nar/gks865

    Google Scholar 

  96. Costanzi C, Pehrson JR (1998) Histone macroH2A1 is concentrated in the inactive X chromosome of female mammals. Nature 393(6685):599–601

    Article  PubMed  CAS  Google Scholar 

  97. Buschbeck M, Uribesalgo I, Wibowo I, Rue P, Martin D, Gutierrez A, Morey L, Guigo R, Lopez-Schier H, Di Croce L (2009) The histone variant macroH2A is an epigenetic regulator of key developmental genes. Nat Struct Mol Biol 16(10):1074–1079. doi:10.1038/nsmb.1665

    Article  PubMed  CAS  Google Scholar 

  98. Gamble MJ, Frizzell KM, Yang C, Krishnakumar R, Kraus WL (2010) The histone variant macroH2A1 marks repressed autosomal chromatin, but protects a subset of its target genes from silencing. Genes Dev 24(1):21–32. doi:10.1101/gad.1876110

    Article  PubMed  CAS  Google Scholar 

  99. Agelopoulos M, Thanos D (2006) Epigenetic determination of a cell-specific gene expression program by ATF-2 and the histone variant macroH2A. EMBO J 25(20):4843–4853

    Article  PubMed  CAS  Google Scholar 

  100. Hernandez-Munoz I, Lund AH, van der Stoop P, Boutsma E, Muijrers I, Verhoeven E, Nusinow DA, Panning B, Marahrens Y, van Lohuizen M (2005) Stable X chromosome inactivation involves the PRC1 Polycomb complex and requires histone MACROH2A1 and the CULLIN3/SPOP ubiquitin E3 ligase. Proc Natl Acad Sci USA 102(21):7635–7640

    Article  PubMed  CAS  Google Scholar 

  101. Changolkar LN, Costanzi C, Leu NA, Chen D, McLaughlin KJ, Pehrson JR (2007) Developmental changes in histone macroH2A1-mediated gene regulation. Mol Cell Biol 27(7):2758–2764

    Article  PubMed  CAS  Google Scholar 

  102. Changolkar LN, Singh G, Pehrson JR (2008) MacroH2A1-dependent silencing of endogenous murine leukemia viruses. Mol Cell Biol 28(6):2059–2065. doi:10.1128/MCB.01362-07

    Article  PubMed  CAS  Google Scholar 

  103. Boulard M, Storck S, Cong R, Pinto R, Delage H, Bouvet P (2010) Histone variant macroH2A1 deletion in mice causes female-specific steatosis. Epigenet Chromatin 3(1):8. doi:10.1186/1756-8935-3-8

    Article  CAS  Google Scholar 

  104. Angelov D, Molla A, Perche PY, Hans F, Cote J, Khochbin S, Bouvet P, Dimitrov S (2003) The histone variant macroH2A interferes with transcription factor binding and SWI/SNF nucleosome remodeling. Mol Cell 11(4):1033–1041

    Article  PubMed  CAS  Google Scholar 

  105. Doyen CM, An W, Angelov D, Bondarenko V, Mietton F, Studitsky VM, Hamiche A, Roeder RG, Bouvet P, Dimitrov S (2006) Mechanism of polymerase II transcription repression by the histone variant macroH2A. Mol Cell Biol 26(3):1156–1164

    Article  PubMed  CAS  Google Scholar 

  106. Chang EY, Ferreira H, Somers J, Nusinow DA, Owen-Hughes T, Narlikar GJ (2008) MacroH2A allows ATP-dependent chromatin remodeling by SWI/SNF and ACF complexes but specifically reduces recruitment of SWI/SNF. Biochemistry 47(51):13726–13732

    Article  PubMed  CAS  Google Scholar 

  107. Angelov D, Bondarenko VA, Almagro S, Menoni H, Mongelard F, Hans F, Mietton F, Studitsky VM, Hamiche A, Dimitrov S, Bouvet P (2006) Nucleolin is a histone chaperone with FACT-like activity and assists remodeling of nucleosomes. EMBO J 25(8):1669–1679. doi:10.1038/sj.emboj.7601046

    Article  PubMed  CAS  Google Scholar 

  108. Mietton F, Sengupta AK, Molla A, Picchi G, Barral S, Heliot L, Grange T, Wutz A, Dimitrov S (2009) Weak but uniform enrichment of the histone variant macroH2A1 along the inactive X chromosome. Mol Cell Biol 29(1):150–156. doi:10.1128/MCB.00997-08

    Article  PubMed  CAS  Google Scholar 

  109. Changolkar LN, Singh G, Cui K, Berletch JB, Zhao K, Disteche CM, Pehrson JR (2010) Genome-wide distribution of macroH2A1 histone variants in mouse liver chromatin. Mol Cell Biol 30(23):5473–5483. doi:10.1128/MCB.00518-10

    Article  PubMed  CAS  Google Scholar 

  110. Ouararhni K, Hadj-Slimane R, Ait-Si-Ali S, Robin P, Mietton F, Harel-Bellan A, Dimitrov S, Hamiche A (2006) The histone variant mH2A1.1 interferes with transcription by down-regulating PARP-1 enzymatic activity. Genes Dev 20(23):3324–3336

    Article  PubMed  CAS  Google Scholar 

  111. Creppe C, Janich P, Cantarino N, Noguera M, Valero V, Musulen E, Douet J, Posavec M, Martin-Caballero J, Sumoy L, Di Croce L, Benitah SA, Buschbeck M (2012) MacroH2A1 regulates the balance between self-renewal and differentiation commitment in embryonic and adult stem cells. Mol Cell Biol 32(8):1442–1452. doi:10.1128/MCB.06323-11

    Article  PubMed  CAS  Google Scholar 

  112. Creppe C, Posavec M, Douet J, Buschbeck M (2012) MacroH2A in stem cells: a story beyond gene repression. Epigenomics 4(2):221–227. doi:10.2217/epi.12.8

    Article  PubMed  CAS  Google Scholar 

  113. Azuara V, Perry P, Sauer S, Spivakov M, Jorgensen HF, John RM, Gouti M, Casanova M, Warnes G, Merkenschlager M, Fisher AG (2006) Chromatin signatures of pluripotent cell lines. Nat Cell Biol 8(5):532–538. doi:10.1038/ncb1403

    Article  PubMed  CAS  Google Scholar 

  114. Bernstein BE, Mikkelsen TS, Xie X, Kamal M, Huebert DJ, Cuff J, Fry B, Meissner A, Wernig M, Plath K, Jaenisch R, Wagschal A, Feil R, Schreiber SL, Lander ES (2006) A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 125(2):315–326

    Article  PubMed  CAS  Google Scholar 

  115. Kirmizis A, Bartley SM, Kuzmichev A, Margueron R, Reinberg D, Green R, Farnham PJ (2004) Silencing of human Polycomb target genes is associated with methylation of histone H3 Lys 27. Genes Dev 18(13):1592–1605

    Article  PubMed  CAS  Google Scholar 

  116. Kuzmichev A, Nishioka K, Erdjument-Bromage H, Tempst P, Reinberg D (2002) Histone methyltransferase activity associated with a human multiprotein complex containing the enhancer of zeste protein. Genes Dev 16(22):2893–2905

    Article  PubMed  CAS  Google Scholar 

  117. Chang CC, Ma Y, Jacobs S, Tian XC, Yang X, Rasmussen TP (2005) A maternal store of macroH2A is removed from pronuclei prior to onset of somatic macroH2A expression in preimplantation embryos. Dev Biol 278(2):367–380

    Article  PubMed  CAS  Google Scholar 

  118. Nashun B, Yukawa M, Liu H, Akiyama T, Aoki F (2010) Changes in the nuclear deposition of histone H2A variants during pre-implantation development in mice. Development 137(22):3785–3794. doi:10.1242/dev.051805

    Article  PubMed  CAS  Google Scholar 

  119. Pehrson JR, Costanzi C, Dharia C (1997) Developmental and tissue expression patterns of histone macroH2A1 subtypes. J Cell Biochem 65(1):107–113. doi:10.1002/(SICI)1097-4644(199704)65:1<107:AID-JCB11>3.0.CO;2-H

    Article  PubMed  CAS  Google Scholar 

  120. Dai B, Rasmussen TP (2007) Global epiproteomic signatures distinguish embryonic stem cells from differentiated cells. Stem Cells 25(10):2567–2574. doi:10.1634/stemcells.2007-0131

    Article  PubMed  CAS  Google Scholar 

  121. Tanasijevic B, Rasmussen TP (2011) X chromosome inactivation and differentiation occur readily in ES cells doubly-deficient for macroH2A1 and macroH2A2. PLoS One 6(6):e21512. doi:10.1371/journal.pone.0021512

    Article  PubMed  CAS  Google Scholar 

  122. Pasque V, Radzisheuskaya A, Gillich A, Halley-Stott RP, Panamarova M, Zernicka-Goetz M, Surani MA, Silva JC (2012) Histone variant macroH2A marks embryonic differentiation in vivo and acts as an epigenetic barrier to induced pluripotency. J Cell Sci. doi:10.1242/jcs.113019

    PubMed  Google Scholar 

  123. Pasque V, Gillich A, Garrett N, Gurdon JB (2011) Histone variant macroH2A confers resistance to nuclear reprogramming. EMBO J 30(12):2373–2387. doi:10.1038/emboj.2011.144

    Article  PubMed  CAS  Google Scholar 

  124. Pasque V, Halley-Stott RP, Gillich A, Garrett N, Gurdon JB (2011) Epigenetic stability of repressed states involving the histone variant macroH2A revealed by nuclear transfer to xenopus oocytes. Nucleus 2(6) (pii: 17799)

    Google Scholar 

  125. Kim JK, Fillmore JJ, Chen Y, Yu C, Moore IK, Pypaert M, Lutz EP, Kako Y, Velez-Carrasco W, Goldberg IJ, Breslow JL, Shulman GI (2001) Tissue-specific overexpression of lipoprotein lipase causes tissue-specific insulin resistance. Proc Natl Acad Sci USA 98(13):7522–7527. doi:10.1073/pnas.121164498

    Article  PubMed  CAS  Google Scholar 

  126. Schreiber G (2002) The evolutionary and integrative roles of transthyretin in thyroid hormone homeostasis. J Endocrinol 175(1):61–73 (JOE04765)

    Article  PubMed  CAS  Google Scholar 

  127. Kapoor A, Goldberg MS, Cumberland LK, Ratnakumar K, Segura MF, Emanuel PO, Menendez S, Vardabasso C, Leroy G, Vidal CI, Polsky D, Osman I, Garcia BA, Hernando E, Bernstein E (2010) The histone variant macroH2A suppresses melanoma progression through regulation of CDK8. Nature 468(7327):1105–1109. doi:10.1038/nature09590

    Article  PubMed  CAS  Google Scholar 

  128. Dardenne E, Pierredon S, Driouch K, Gratadou L, Lacroix-Triki M, Espinoza MP, Zonta E, Germann S, Mortada H, Villemin JP, Dutertre M, Lidereau R, Vagner S, Auboeuf D (2012) Splicing switch of an epigenetic regulator by RNA helicases promotes tumor-cell invasiveness. Nat Struct Mol Biol 19(11):1139–1146. doi:10.1038/nsmb.2390

    Article  PubMed  CAS  Google Scholar 

  129. Novikov L, Park JW, Chen H, Klerman H, Jalloh AS, Gamble MJ (2011) QKI-mediated alternative splicing of the histone variant macroH2A1 regulates cancer cell proliferation. Mol Cell Biol 31(20):4244–4255. doi:10.1128/MCB.05244-11

    Article  PubMed  CAS  Google Scholar 

  130. Sporn JC, Kustatscher G, Hothorn T, Collado M, Serrano M, Muley T, Schnabel P, Ladurner AG (2009) Histone macroH2A isoforms predict the risk of lung cancer recurrence. Oncogene. doi:10.1038/onc.2009.26

    PubMed  Google Scholar 

  131. Sporn JC, Jung B (2012) Differential regulation and predictive potential of macroH2A1 isoforms in colon cancer. Am J Pathol 180(6):2516–2526. doi:10.1016/j.ajpath.2012.02.027

    Article  PubMed  CAS  Google Scholar 

  132. Barzily-Rokni M, Friedman N, Ron-Bigger S, Isaac S, Michlin D, Eden A (2010) Synergism between DNA methylation and macroH2A1 occupancy in epigenetic silencing of the tumor suppressor gene p16 (CDKN2A). Nucleic Acids Res 39(4):1326–1335. doi:10.1093/nar/gkq994

    Article  PubMed  CAS  Google Scholar 

  133. Zhang R, Poustovoitov MV, Ye X, Santos HA, Chen W, Daganzo SM, Erzberger JP, Serebriiskii IG, Canutescu AA, Dunbrack RL, Pehrson JR, Berger JM, Kaufman PD, Adams PD (2005) Formation of macroH2A-containing senescence-associated heterochromatin foci and senescence driven by ASF1a and HIRA. Dev Cell 8(1):19–30

    Article  PubMed  CAS  Google Scholar 

  134. Yanes O, Clark J, Wong DM, Patti GJ, Sanchez-Ruiz A, Benton HP, Trauger SA, Desponts C, Ding S, Siuzdak G (2010) Metabolic oxidation regulates embryonic stem cell differentiation. Nat Chem Biol 6(6):411–417. doi:10.1038/nchembio.364

    Article  PubMed  CAS  Google Scholar 

  135. Tiku PE, Gracey AY, Macartney AI, Beynon RJ, Cossins AR (1996) Cold-induced expression of delta 9-desaturase in carp by transcriptional and posttranslational mechanisms. Science 271(5250):815–818

    Article  PubMed  CAS  Google Scholar 

  136. Vera MI, Norambuena L, Alvarez M, Figueroa J, Molina A, Leon G, Krauskopf M (1993) Reprogramming of nucleolar gene expression during the acclimatization of the carp. Cell Mol Biol Res 39(7):665–674

    PubMed  CAS  Google Scholar 

  137. Pinto R, Ivaldi C, Reyes M, Doyen C, Mietton F, Mongelard F, Alvarez M, Molina A, Dimitrov S, Krauskopf M, Vera MI, Bouvet P (2005) Seasonal environmental changes regulate the expression of the histone variant macroH2A in an eurythermal fish. FEBS Lett 579(25):5553–5558

    Article  PubMed  CAS  Google Scholar 

  138. Ratnakumar K, Duarte LF, Leroy G, Hasson D, Smeets D, Vardabasso C, Bonisch C, Zeng T, Xiang B, Zhang DY, Li H, Wang X, Hake SB, Schermelleh L, Garcia BA, Bernstein E (2012) ATRX-mediated chromatin association of histone variant macroH2A1 regulates alpha-globin expression. Genes Dev 26(5):433–438. doi:10.1101/gad.179416.111

    Article  PubMed  CAS  Google Scholar 

  139. Li X, Kuang J, Shen Y, Majer MM, Nelson CC, Parsawar K, Heichman KA, Kuwada SK (2012) The atypical histone macroH2A1.2 interacts with HER-2 protein in cancer cells. J Biol Chem 287(27):23171–23183. doi:10.1074/jbc.M112.379412

    Article  PubMed  CAS  Google Scholar 

  140. Kim W, Chakraborty G, Kim S, Shin J, Park CH, Jeong MW, Bharatham N, Yoon HS, Kim KT (2012) Macro histone H2A1.2 (macroH2A1) protein suppresses mitotic kinase VRK1 during interphase. J Biol Chem 287(8):5278–5289. doi:10.1074/jbc.M111.281709

    Article  PubMed  CAS  Google Scholar 

  141. Nusinow DA, Hernandez-Munoz I, Fazzio TG, Shah GM, Kraus WL, Panning B (2007) Poly (ADP-ribose) polymerase 1 is inhibited by a histone H2A variant, macroH2A, and contributes to silencing of the inactive X chromosome. J Biol Chem 282(17):12851–12859

    Article  PubMed  CAS  Google Scholar 

  142. Miura D, Fujimura Y, Wariishi H (2012) In situ metabolomic mass spectrometry imaging: recent advances and difficulties. J Proteomics. doi:10.1016/j.jprot.2012.02.011

    PubMed  Google Scholar 

  143. Hung YP, Albeck JG, Tantama M, Yellen G (2011) Imaging cytosolic NADH-NAD (+) redox state with a genetically encoded fluorescent biosensor. Cell Metab 14(4):545–554. doi:10.1016/j.cmet.2011.08.012

    Article  PubMed  CAS  Google Scholar 

  144. Mehrotra PV, Ahel D, Ryan DP, Weston R, Wiechens N, Kraehenbuehl R, Owen-Hughes T, Ahel I (2011) DNA repair factor APLF is a histone chaperone. Mol Cell 41(1):46–55. doi:10.1016/j.molcel.2010.12.008

    Article  PubMed  CAS  Google Scholar 

  145. Xu C, Xu Y, Gursoy-Yuzugullu O, Price BD (2012) The histone variant macroH2A1.1 is recruited to DSBs through a mechanism involving PARP1. FEBS Lett. doi:10.1016/j.febslet.2012.09.030

    Google Scholar 

  146. Kraus WL (2009) New functions for an ancient domain. Nat Struct Mol Biol 16(9):904–907

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We apologize to colleagues whose work could not be cited due to space limitations. The authors would like to thank Markus Hassler for his help in preparing the figures and Vincent Pasque, Harvey Evans, and members of the Buschbeck and Timinszky labs for their comments on the manuscript. Research in the Buschbeck lab is supported by Spanish MINECO grants (SAF2009-08496, SAF2012-39749 and RYC2010-07337). MP holds a predoctoral FI fellowship (AGAUR) and MB is a Ramón Y Cajal fellow (MINECO).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gyula Timinszky or Marcus Buschbeck.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Posavec, M., Timinszky, G. & Buschbeck, M. Macro domains as metabolite sensors on chromatin. Cell. Mol. Life Sci. 70, 1509–1524 (2013). https://doi.org/10.1007/s00018-013-1294-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-013-1294-4

Keywords

Navigation