Skip to main content

Advertisement

Log in

Systems biology for molecular life sciences and its impact in biomedicine

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

An Erratum to this article was published on 06 June 2013

Abstract

Modern systems biology is already contributing to a radical transformation of molecular life sciences and biomedicine, and it is expected to have a real impact in the clinical setting in the next years. In this review, the emergence of systems biology is contextualized with a historic overview, and its present state is depicted. The present and expected future contribution of systems biology to the development of molecular medicine is underscored. Concerning the present situation, this review includes a reflection on the “inflation” of biological data and the urgent need for tools and procedures to make hidden information emerge. Descriptions of the impact of networks and models and the available resources and tools for applying them in systems biology approaches to molecular medicine are provided as well. The actual current impact of systems biology in molecular medicine is illustrated, reviewing two cases, namely, those of systems pharmacology and cancer systems biology. Finally, some of the expected contributions of systems biology to the immediate future of molecular medicine are commented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Chuang HY, Hofree M, Ideker T (2010) A decade of systems biology. Annu Rev Cell Dev Biol 26:721–744

    PubMed  CAS  Google Scholar 

  2. Loeb J (1912) The mechanistic conception of life. Bellknap Press, Cambridge

    Google Scholar 

  3. Smuts JC (1926) Holism and evolution. Viking Press, New York

    Google Scholar 

  4. Corning P (2002) The re-emergence of “emergence”. A venerable concept in search of a theory. Complexity 7:18–30

    Google Scholar 

  5. Vernadsky V (1926) The Biosphere [in Russian]. Nauch, St. Petersburg

    Google Scholar 

  6. Williams RJ (1956) Biochemical Individuality: the Key for the Genotrophic Concept. Wiley, New York

    Google Scholar 

  7. La Jacob F (1970) Logique du Vivant. Gallimard, Paris

    Google Scholar 

  8. Polanyi M (1968) Life’s irreducible structure. Live mechanisms and information in DNA are boundary conditions with a sequence of boundaries above them. Science 160:1308–1312

    PubMed  CAS  Google Scholar 

  9. Von Bertalanffy L (1950) The theory of open systems in physics and biology. Science 111:23–29

    Google Scholar 

  10. Von Bertalanffy L (1968) General systems theory: foundations, development, applications. George Braziller, New York

    Google Scholar 

  11. Kitano H (2002) Systems biology: a brief overview. Science 295:1662–1664

    PubMed  CAS  Google Scholar 

  12. Hartwell LH, Hopfield JJ, Leibler S, Murray AW (1999) From molecular to modular cell biology. Nature 402:C47–C52

    PubMed  CAS  Google Scholar 

  13. Ideker T, Galitski T, Hood L (2001) A new approach to decoding life: systems biology. Annu Rev Genomics Hum Genet 2:343–372

    PubMed  CAS  Google Scholar 

  14. Ranea JA, Morilla I, Lees JG, Reid AJ, Yeats C, Clegg AB, Sánchez-Jiménez F, Orengo C (2010) Finding the “dark matter” in human and yeast protein network prediction and modelling. PLoS Comput Biol 6:e1000945

    Google Scholar 

  15. Barabasi AL (2002) Linked: the new science of networks. Basic Books, New York

    Google Scholar 

  16. Jeong H, Tombor B, Albert R, Oltvai ZN, Barabasi AL (2000) The large-scale organization of metabolic networks. Nature 407:651–654

    PubMed  CAS  Google Scholar 

  17. Rodríguez-Caso C, Medina MA, Solé RV (2005) Topology, tinkering and evolution of the human transcription factor network. FEBS J 272:6423–6434

    PubMed  Google Scholar 

  18. Han JD, Bertin N, Hao T, Goldberg DS, Berriz GF, Zhang LV, Dupuy D, Walhout AJ, Cusick ME, Roth FP, Vidal M (2004) Evidence for dynamically organized modularity in the yeast protein–protein interaction network. Nature 430:88–93

    PubMed  CAS  Google Scholar 

  19. Watts DJ, Strogatz SH (1998) Collective dynamics of ‘small-world’ networks. Nature 393:440–442

    PubMed  CAS  Google Scholar 

  20. Li S, Armstrong CM, Bertin N, Ge H, Milstein S, Boxem M, Vidalain PO, Han JD, Chesneau A, Hao T, Goldberg DS, Li N, Martinez M, Rual JF, Lamesch P, Xu L, Tewari M, Wong SL, Zhang LV, Berriz GF, Jacotot L, Vaglio P, Reboul J, Hirozane-Kishikawa T, Li Q, Gabel HW, Elewa A, Baumgartner B, Rose DJ, Yu H, Bosak S, Sequerra R, Fraser A, Mango SE, Saxton WM, Strome S, Van Den Heuvel S, Piano F, Vandenhaute J, Sardet C, Gerstein M, Doucette-Stamm L, Gunsalus KC, Harper JW, Cusick ME, Roth FP, Hill DE, Vidal M (2004) A map of the interactome network of the metazoan C. elegans. Science 303:540–543

    PubMed  CAS  Google Scholar 

  21. Cusick ME, Klitgord N, Vidal M, Hill DE (2005) Interactome: gateway into systems biology. Hum Mol Genet 14 Spec No. 2:R171–181

    Google Scholar 

  22. Stelzl U, Worm U, Lalowski M, Haenig C, Brembeck FH, Goehler H, Stroedicke M, Zenkner M, Schoenherr A, Koeppen S, Timm J, Mintzlaff S, Abraham C, Bock N, Kietzmann S, Goedde A, Toksoz E, Droege A, Krobitsch S, Korn B, Birchmeier W, Lehrach H, Wanker EE (2005) A human protein–protein interaction network: a resource for annotating the proteome. Cell 122:957–968

    PubMed  CAS  Google Scholar 

  23. Warner GJ, Adeleye YA, Ideker T (2006) Interactome networks: the state of the science. Genome Biol 7:301

    PubMed  Google Scholar 

  24. Figeys D (2008) Mapping the human protein interactome. Cell Res 18:716–724

    PubMed  CAS  Google Scholar 

  25. Venkatesan K, Rual JF, Vazquez A, Stelzl U, Lemmens I, Hirozane-Kishikawa T, Hao T, Zenkner M, Xin X, Goh KI, Yildirim MA, Simonis N, Heinzmann K, Gebreab F, Sahalie JM, Cevik S, Simon C, de Smet AS, Dann E, Smolyar A, Vinayagam A, Yu H, Szeto D, Borick H, Dricot A, Klitgord N, Murray RR, Lin C, Lalowski M, Timm J, Rau K, Boone C, Braun P, Cusick ME, Roth FP, Hill DE, Tavernier J, Wanker EE, Barabasi AL, Vidal M (2009) An empirical framework for binary interactome mapping. Nat Methods 6:83–90

    PubMed  CAS  Google Scholar 

  26. Walhout AJ, Reboul J, Shtanko O, Bertin N, Vaglio P, Ge H, Lee H, Doucette-Stamm L, Gunsalus KC, Schetter AJ, Morton DG, Kemphues KJ, Reinke V, Kim SK, Piano F, Vidal M (2002) Integrating interactome, phenome, and transcriptome mapping data for the C. elegans germline. Curr Biol 12:1952–1958

    PubMed  CAS  Google Scholar 

  27. Lage K, Karlberg EO, Storling ZM, Olason PI, Pedersen AG, Rigina O, Hinsby AM, Tumer Z, Pociot F, Tommerup N, Moreau Y, Brunak S (2007) A human phenome-interactome network of protein complexes implicated in genetic disorders. Nat Biotechnol 25:309–316

    PubMed  CAS  Google Scholar 

  28. Yao C, Li H, Zhou C, Zhang L, Zou J, Guo Z (2010) Multi-level reproducibility of signature hubs in human interactome for breast cancer metastasis. BMC Syst Biol 4:151

    PubMed  Google Scholar 

  29. Shutt TE, Shadel GS (2007) Expanding the mitochondrial interactome. Genome Biol 8:203

    PubMed  Google Scholar 

  30. Reja R, Venkatakrishnan AJ, Lee J, Kim BC, Ryu JW, Gong S, Bhak J, Park D (2009) MitoInteractome: mitochondrial protein interactome database, and its application in ‘aging network’ analysis. BMC Genomics 10(Suppl 3):S20

    PubMed  Google Scholar 

  31. Bandyopadhyay S, Chiang CY, Srivastava J, Gersten M, White S, Bell R, Kurschner C, Martin CH, Smoot M, Sahasrabudhe S, Barber DL, Chanda SK, Ideker T (2010) A human MAP kinase interactome. Nat Methods 7:801–805

    PubMed  CAS  Google Scholar 

  32. Eden G, Archinti M, Furlan F, Murphy R, Degryse B (2011) The urokinase receptor interactome. Curr Pharm Des 17:1874–1889

    PubMed  CAS  Google Scholar 

  33. Tieri P, Termanini A, Bellavista E, Salvioli S, Capri M, Franceschi C (2012) Charting the NF-kappaB pathway interactome map. PLoS ONE 7:e32678

    PubMed  CAS  Google Scholar 

  34. Tarassov K, Messier V, Landry CR, Radinovic S, Serna Molina MM, Shames I, Malitskaya Y, Vogel J, Bussey H, Michnick SW (2008) An in vivo map of the yeast protein interactome. Science 320:1465–1470

    PubMed  CAS  Google Scholar 

  35. Kast J (2008) Making connections for life: an in vivo map of the yeast interactome. HFSP J 2:244–250

    PubMed  Google Scholar 

  36. Przytycka TM, Singh M, Slonim DK (2010) Toward the dynamic interactome: it’s about time. Brief Bioinform 11:15–29

    PubMed  CAS  Google Scholar 

  37. Gallego O, Betts MJ, Gvozdenovic-Jeremic J, Maeda K, Matetzki C, Aguilar-Gurrieri C, Beltran-Alvarez P, Bonn S, Fernandez-Tornero C, Jensen LJ, Kuhn M, Trott J, Rybin V, Muller CW, Bork P, Kaksonen M, Russell RB, Gavin AC (2010) A systematic screen for protein-lipid interactions in Saccharomyces cerevisiae. Mol Syst Biol 6:430

    PubMed  CAS  Google Scholar 

  38. Kohler S, Bauer S, Horn D, Robinson PN (2008) Walking the interactome for prioritization of candidate disease genes. Am J Hum Genet 82:949–958

    PubMed  Google Scholar 

  39. Coulombe B (2011) Mapping the disease protein interactome: toward a molecular medicine GPS to accelerate drug and biomarker discovery. J Proteome Res 10:120–125

    PubMed  CAS  Google Scholar 

  40. Kahle JJ, Gulbahce N, Shaw CA, Lim J, Hill DE, Barabasi AL, Zoghbi HY (2011) Comparison of an expanded ataxia interactome with patient medical records reveals a relationship between macular degeneration and ataxia. Hum Mol Genet 20:510–527

    PubMed  CAS  Google Scholar 

  41. Soler-Lopez M, Zanzoni A, Lluis R, Stelzl U, Aloy P (2011) Interactome mapping suggests new mechanistic details underlying Alzheimer’s disease. Genome Res 21:364–376

    PubMed  CAS  Google Scholar 

  42. Vidal M, Cusick ME, Barabasi AL (2011) Interactome networks and human disease. Cell 144:986–998

    PubMed  CAS  Google Scholar 

  43. Simonis N, Rual JF, Lemmens I, Boxus M, Hirozane-Kishikawa T, Gatot JS, Dricot A, Hao T, Vertommen D, Legros S, Daakour S, Klitgord N, Martin M, Willaert JF, Dequiedt F, Navratil V, Cusick ME, Burny A, Van Lint C, Hill DE, Tavernier J, Kettmann R, Vidal M, Twizere JC (2012) Host-pathogen interactome mapping for HTLV-1 and 2 retroviruses. Retrovirology 9:26

    PubMed  CAS  Google Scholar 

  44. Hernandez-Toro J, Prieto C, De las Rivas J (2007) APID2NET: unified interactome graphic analyzer. Bioinformatics 23:2495–2497

    PubMed  CAS  Google Scholar 

  45. Cline MS, Smoot M, Cerami E, Kuchinsky A, Landys N, Workman C, Christmas R, Avila-Campilo I, Creech M, Gross B, Hanspers K, Isserlin R, Kelley R, Killcoyne S, Lotia S, Maere S, Morris J, Ono K, Pavlovic V, Pico AR, Vailaya A, Wang PL, Adler A, Conklin BR, Hood L, Kuiper M, Sander C, Schmulevich I, Schwikowski B, Warner GJ, Ideker T, Bader GD (2007) Integration of biological networks and gene expression data using Cytoscape. Nat Protoc 2:2366–2382

    PubMed  CAS  Google Scholar 

  46. Smoot ME, Ono K, Ruscheinski J, Wang PL, Ideker T (2011) Cytoscape 2.8: new features for data integration and network visualization. Bioinformatics 27:431–432

    PubMed  CAS  Google Scholar 

  47. Montañez R, Sánchez-Jiménez F, Quesada AR, Medina MA (2011) Exploring and challenging the network of angiogenesis. Sci Rep 1:61

    PubMed  Google Scholar 

  48. Kravchenko-Balasha N, Levitzki A, Goldstein A, Rotter V, Gross A, Remacle F, Levine RD (2012) On a fundamental structure of gene networks in living cells. Proc Natl Acad Sci USA 109:4702–4707

    PubMed  CAS  Google Scholar 

  49. Westerhoff HV, Winder C, Messiha H, Simeonidis E, Adamczyk M, Verma M, Bruggeman FJ, Dunn W (2009) Systems biology: the elements and principles of life. FEBS Lett 583:3882–3890

    PubMed  CAS  Google Scholar 

  50. Wilson EO (1999) Consilience: the Unity of Knowledge. Vintage Books, New York

    Google Scholar 

  51. (1999) Consilience, complexity, and communication: three challenges at the start of the new century. Bioessays 21:983–984

  52. Rodríguez-Caso C, Montañez R, Cascante M, Sánchez-Jiménez F, Medina MA (2006) Mathematical modeling of polyamine metabolism in mammals. J Biol Chem 281:21799–21812

    PubMed  CAS  Google Scholar 

  53. Li C, Courtot M, Le Novere N, Laibe C (2010) BioModels.net Web Services, a free and integrated toolkit for computational modelling software. Brief Bioinform 11:270–277

    PubMed  CAS  Google Scholar 

  54. Reyes-Palomares A, Montañez R, Sánchez-Jiménez F, Medina MA (2012) A combined model of hepatic polyamine and sulfur amino acid metabolism to analyze S-adenosyl methionine availability. Amino Acids 42:597–610

    PubMed  CAS  Google Scholar 

  55. Savageau MA (1969) Biochemical systems analysis. II. The steady-state solutions for an n-pool system using a power-law approximation. J Theor Biol 25:370–379

    PubMed  CAS  Google Scholar 

  56. Savageau MA (1969) Biochemical systems analysis. I. Some mathematical properties of the rate law for the component enzymatic reactions. J Theor Biol 25:365–369

    PubMed  CAS  Google Scholar 

  57. Savageau MA (1970) Biochemical systems analysis. 3. Dynamic solutions using a power-law approximation. J Theor Biol 26:215–226

    PubMed  CAS  Google Scholar 

  58. Voit EO (2000) Computational analysis of biochemical systems. Cambridge University Press, Cambridge

    Google Scholar 

  59. Kanehisa M, Goto S (2000) KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28:27–30

    PubMed  CAS  Google Scholar 

  60. Mendes P, Hoops S, Sahle S, Gauges R, Dada J, Kummer U (2009) Computational modeling of biochemical networks using COPASI. Methods Mol Biol 500:17–59

    PubMed  CAS  Google Scholar 

  61. Reyes-Palomares A, Montañez R, Real-Chicharro A, Chniber O, Kerzazi A, Navas-Delgado I, Medina MA, Aldana-Montes JF, Sánchez-Jiménez F (2009) Systems biology metabolic modeling assistant: an ontology-based tool for the integration of metabolic data in kinetic modeling. Bioinformatics 25:834–835

    PubMed  CAS  Google Scholar 

  62. Cvijovic M, Olivares-Hernandez R, Agren R, Dahr N, Vongsangnak W, Nookaew I, Patil KR, Nielsen J (2010) BioMet Toolbox: genome-wide analysis of metabolism. Nucleic Acids Res 38:W144–W149

    PubMed  CAS  Google Scholar 

  63. Schellenberger J, Que R, Fleming RM, Thiele I, Orth JD, Feist AM, Zielinski DC, Bordbar A, Lewis NE, Rahmanian S, Kang J, Hyduke DR, Palsson BO (2011) Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox v2.0. Nat Protoc 6:1290–1307

    PubMed  CAS  Google Scholar 

  64. Voit EO, Radivoyevitch T (2000) Biochemical systems analysis of genome-wide expression data. Bioinformatics 16:1023–1037

    PubMed  CAS  Google Scholar 

  65. Ma H, Sorokin A, Mazein A, Selkov A, Selkov E, Demin O, Goryanin I (2007) The Edinburgh human metabolic network reconstruction and its functional analysis. Mol Syst Biol 3:135

    PubMed  Google Scholar 

  66. Duarte NC, Becker SA, Jamshidi N, Thiele I, Mo ML, Vo TD, Srivas R, Palsson BO (2007) Global reconstruction of the human metabolic network based on genomic and bibliomic data. Proc Natl Acad Sci USA 104:1777–1782

    PubMed  CAS  Google Scholar 

  67. Terzer M, Maynard ND, Covert MW, Stelling J (2009) Genome-scale metabolic networks. Wiley Interdiscip Rev Syst Biol Med 1:285–297

    PubMed  CAS  Google Scholar 

  68. Edwards JS, Palsson BO (2000) Metabolic flux balance analysis and the in silico analysis of Escherichia coli K-12 gene deletions. BMC Bioinformatics 1:1

    PubMed  CAS  Google Scholar 

  69. Kauffman KJ, Prakash P, Edwards JS (2003) Advances in flux balance analysis. Curr Opin Biotechnol 14:491–496

    PubMed  CAS  Google Scholar 

  70. Lee JM, Gianchandani EP, Papin JA (2006) Flux balance analysis in the era of metabolomics. Brief Bioinform 7:140–150

    PubMed  Google Scholar 

  71. Raman K, Chandra N (2009) Flux balance analysis of biological systems: applications and challenges. Brief Bioinform 10:435–449

    PubMed  CAS  Google Scholar 

  72. Murabito E, Simeonidis E, Smallbone K, Swinton J (2009) Capturing the essence of a metabolic network: a flux balance analysis approach. J Theor Biol 260:445–452

    PubMed  CAS  Google Scholar 

  73. Orth JD, Thiele I, Palsson BO (2010) What is flux balance analysis? Nat Biotechnol 28:245–248

    PubMed  CAS  Google Scholar 

  74. Gianchandani EP, Chavali AK, Papin JA (2010) The application of flux balance analysis in systems biology. Wiley Interdiscip Rev Syst Biol Med 2:372–382

    PubMed  CAS  Google Scholar 

  75. Li Z, Wang RS, Zhang XS (2011) Two-stage flux balance analysis of metabolic networks for drug target identification. BMC Syst Biol 5(Suppl 1):S11

    Google Scholar 

  76. Tiger CF, Krause F, Cedersund G, Palmer R, Klipp E, Hohmann S, Kitano H, Krantz M (2012) A framework for mapping, visualisation and automatic model creation of signal-transduction networks. Mol Syst Biol 8:578

    PubMed  CAS  Google Scholar 

  77. Wild DJ, Ding Y, Sheth AP, Harland L, Gifford EM, Lajiness MS (2012) Systems chemical biology and the Semantic Web: what they mean for the future of drug discovery research. Drug Discov Today 17:469–474

    PubMed  CAS  Google Scholar 

  78. Ekins S, Nikolsky Y, Nikolskaya T (2005) Techniques: application of systems biology to absorption, distribution, metabolism, excretion and toxicity. Trends Pharmacol Sci 26:202–209

    PubMed  CAS  Google Scholar 

  79. Hoeng J, Deehan R, Pratt D, Martin F, Sewer A, Thomson TM, Drubin DA, Waters CA, de Graaf D, Peitsch MC (2012) A network-based approach to quantifying the impact of biologically active substances. Drug Discov Today 17:413–418

    PubMed  Google Scholar 

  80. Quesada AR, Muñoz-Chápuli R, Medina MA (2006) Anti-angiogenic drugs: from bench to clinical trials. Med Res Rev 26:483–530

    PubMed  CAS  Google Scholar 

  81. Medina MA, Muñoz-Chápuli R, Quesada AR (2007) Challenges of antiangiogenic cancer therapy: trials and errors, and renewed hope. J Cell Mol Med 11:374–382

    PubMed  CAS  Google Scholar 

  82. Quesada AR, Medina MA, Muñoz-Cáapuli R, Ponce AL (2010) Do not say ever never more: the ins and outs of antiangiogenic therapies. Curr Pharm Des 16:3932–3957

    PubMed  CAS  Google Scholar 

  83. Quesada AR, Medina MA, Alba E (2007) Playing only one instrument may be not enough: limitations and future of the antiangiogenic treatment of cancer. BioEssays 29:1159–1168

    PubMed  CAS  Google Scholar 

  84. Lehar J, Krueger AS, Avery W, Heilbut AM, Johansen LM, Price ER, Rickles RJ, Short GF 3rd, Staunton JE, Jin X, Lee MS, Zimmermann GR, Borisy AA (2009) Synergistic drug combinations tend to improve therapeutically relevant selectivity. Nat Biotechnol 27:659–666

    PubMed  CAS  Google Scholar 

  85. Kummar S, Chen HX, Wright J, Holbeck S, Millin MD, Tomaszewski J, Zweibel J, Collins J, Doroshow JH (2010) Utilizing targeted cancer therapeutic agents in combination: novel approaches and urgent requirements. Nat Rev Drug Discov 9:843–856

    PubMed  CAS  Google Scholar 

  86. Cokol M, Chua HN, Tasan M, Mutlu B, Weinstein ZB, Suzuki Y, Nergiz ME, Costanzo M, Baryshnikova A, Giaever G, Nislow C, Myers CL, Andrews BJ, Boone C, Roth FP (2011) Systematic exploration of synergistic drug pairs. Mol Syst Biol 7:544

    PubMed  Google Scholar 

  87. Wagner H (2011) Synergy research: approaching a new generation of phytopharmaceuticals. Fitoterapia 82:34–37

    PubMed  Google Scholar 

  88. Hopkins AL (2007) Network pharmacology. Nat Biotechnol 25:1110–1111

    PubMed  CAS  Google Scholar 

  89. Hopkins AL (2008) Network pharmacology: the next paradigm in drug discovery. Nat Chem Biol 4:682–690

    PubMed  CAS  Google Scholar 

  90. Berger SI, Iyengar R (2009) Network analyses in systems pharmacology. Bioinformatics 25:2466–2472

    PubMed  CAS  Google Scholar 

  91. Hansen J, Zhao S, Iyengar R (2011) Systems pharmacology of complex diseases. Ann N Y Acad Sci 1245:E1–E5

    PubMed  Google Scholar 

  92. Zhao S, Iyengar R (2012) Systems pharmacology: network analysis to identify multiscale mechanisms of drug action. Annu Rev Pharmacol Toxicol 52:505–521

    PubMed  CAS  Google Scholar 

  93. Edelman LB, Eddy JA, Price ND (2010) In silico models of cancer. Wiley Interdiscip Rev Syst Biol Med 2:438–459

    PubMed  CAS  Google Scholar 

  94. Abbod MF, Hamdy FC, Linkens DA, Catto JW (2009) Predictive modeling in cancer: where systems biology meets the stock market. Expert Rev Anticancer Ther 9:867–870

    PubMed  Google Scholar 

  95. Deisboeck TS, Zhang L, Yoon J, Costa J (2009) In silico cancer modeling: is it ready for prime time? Nat Clin Pract Oncol 6:34–42

    PubMed  CAS  Google Scholar 

  96. Alarcon T, Byrne HM, Maini PK (2004) A mathematical model of the effects of hypoxia on the cell-cycle of normal and cancer cells. J Theor Biol 229:395–411

    PubMed  CAS  Google Scholar 

  97. Spencer SL, Berryman MJ, Garcia JA, Abbott D (2004) An ordinary differential equation model for the multistep transformation to cancer. J Theor Biol 231:515–524

    PubMed  CAS  Google Scholar 

  98. Kohandel M, Sivaloganathan S, Oza A (2006) Mathematical modeling of ovarian cancer treatments: sequencing of surgery and chemotherapy. J Theor Biol 242:62–68

    PubMed  CAS  Google Scholar 

  99. Ostby I, Oyehaug L, Steen HB (2006) A stochastic model of cancer initiation including a bystander effect. J Theor Biol 241:751–764

    PubMed  Google Scholar 

  100. d’Onofrio A, Tomlinson IP (2007) A nonlinear mathematical model of cell turnover, differentiation and tumorigenesis in the intestinal crypt. J Theor Biol 244:367–374

    PubMed  Google Scholar 

  101. Verschraegen C, Vinh-Hung V, Cserni G, Gordon R, Royce ME, Vlastos G, Tai P, Storme G (2005) Modeling the effect of tumor size in early breast cancer. Ann Surg 241:309–318

    PubMed  Google Scholar 

  102. Bearer EL, Lowengrub JS, Frieboes HB, Chuang YL, Jin F, Wise SM, Ferrari M, Agus DB, Cristini V (2009) Multiparameter computational modeling of tumor invasion. Cancer Res 69:4493–4501

    PubMed  CAS  Google Scholar 

  103. McDougall SR, Anderson AR, Chaplain MA (2006) Mathematical modelling of dynamic adaptive tumour-induced angiogenesis: clinical implications and therapeutic targeting strategies. J Theor Biol 241:564–589

    PubMed  Google Scholar 

  104. Bauer AL, Jackson TL, Jiang Y (2007) A cell-based model exhibiting branching and anastomosis during tumor-induced angiogenesis. Biophys J 92:3105–3121

    PubMed  CAS  Google Scholar 

  105. Khalil IG, Hill C (2005) Systems biology for cancer. Curr Opin Oncol 17:44–48

    PubMed  CAS  Google Scholar 

  106. Hornberg JJ, Bruggeman FJ, Westerhoff HV, Lankelma J (2006) Cancer: a systems biology disease. Biosystems 83:81–90

    PubMed  CAS  Google Scholar 

  107. Rosenfeld S, Kapetanovic I (2008) Systems biology and cancer prevention: all options on the table. Gene Regul Syst Bio 2:307–319

    PubMed  Google Scholar 

  108. Laubenbacher R, Hower V, Jarrah A, Torti SV, Shulaev V, Mendes P, Torti FM, Akman S (2009) A systems biology view of cancer. Biochim Biophys Acta 1796:129–139

    PubMed  CAS  Google Scholar 

  109. Baker SG, Kramer BS (2011) Systems biology and cancer: promises and perils. Prog Biophys Mol Biol 106:410–413

    PubMed  Google Scholar 

  110. Bizzarri M, Giuliani A, Cucina A, D’Anselmi F, Soto AM, Sonnenschein C (2011) Fractal analysis in a systems biology approach to cancer. Semin Cancer Biol 21:175–182

    PubMed  CAS  Google Scholar 

  111. Gentles AJ, Gallahan D (2011) Systems biology: confronting the complexity of cancer. Cancer Res 71:5961–5964

    PubMed  CAS  Google Scholar 

  112. Price ND, Foltz G, Madan A, Hood L, Tian Q (2008) Systems biology and cancer stem cells. J Cell Mol Med 12:97–110

    PubMed  CAS  Google Scholar 

  113. Faratian D, Goltsov A, Lebedeva G, Sorokin A, Moodie S, Mullen P, Kay C, Um IH, Langdon S, Goryanin I, Harrison DJ (2009) Systems biology reveals new strategies for personalizing cancer medicine and confirms the role of PTEN in resistance to trastuzumab. Cancer Res 69:6713–6720

    PubMed  CAS  Google Scholar 

  114. Goldberger NE, Hunter KW (2009) A systems biology approach to defining metastatic biomarkers and signaling pathways. Wiley Interdiscip Rev Syst Biol Med 1:89–96

    PubMed  CAS  Google Scholar 

  115. Enderling H, Hahnfeldt P, Hlatky L, Almog N (2012) Systems biology of tumor dormancy: linking biology and mathematics on multiple scales to improve cancer therapy. Cancer Res

  116. Garnett MJ, Edelman EJ, Heidorn SJ, Greenman CD, Dastur A, Lau KW, Greninger P, Thompson IR, Luo X, Soares J, Liu Q, Iorio F, Surdez D, Chen L, Milano RJ, Bignell GR, Tam AT, Davies H, Stevenson JA, Barthorpe S, Lutz SR, Kogera F, Lawrence K, McLaren-Douglas A, Mitropoulos X, Mironenko T, Thi H, Richardson L, Zhou W, Jewitt F, Zhang T, O’Brien P, Boisvert JL, Price S, Hur W, Yang W, Deng X, Butler A, Choi HG, Chang JW, Baselga J, Stamenkovic I, Engelman JA, Sharma SV, Delattre O, Saez-Rodriguez J, Gray NS, Settleman J, Futreal PA, Haber DA, Stratton MR, Ramaswamy S, McDermott U, Benes CH (2012) Systematic identification of genomic markers of drug sensitivity in cancer cells. Nature 483:570–575

    PubMed  CAS  Google Scholar 

  117. Wang E, Lenferink A, O’Connor-McCourt M (2007) Cancer systems biology: exploring cancer-associated genes on cellular networks. Cell Mol Life Sci 64:1752–1762

    PubMed  CAS  Google Scholar 

  118. Kreeger PK, Lauffenburger DA (2010) Cancer systems biology: a network modeling perspective. Carcinogenesis 31:2–8

    PubMed  CAS  Google Scholar 

  119. Cui Q, Ma Y, Jaramillo M, Bari H, Awan A, Yang S, Zhang S, Liu L, Lu M, O’Connor-McCourt M, Purisima EO, Wang E (2007) A map of human cancer signaling. Mol Syst Biol 3:152

    PubMed  Google Scholar 

  120. Flores RJ, Li Y, Yu A, Shen J, Rao PH, Lau SS, Vannucci M, Lau CC, Man TK (2012) A systems biology approach reveals common metastatic pathways in osteosarcoma. BMC Syst Biol 6:50

    PubMed  Google Scholar 

  121. Li J, Lenferink AE, Deng Y, Collins C, Cui Q, Purisima EO, O’Connor-McCourt MD, Wang E (2010) Identification of high-quality cancer prognostic markers and metastasis network modules. Nat Commun 1:34

    PubMed  Google Scholar 

  122. Winter C, Kristiansen G, Kersting S, Roy J, Aust D, Knosel T, Rummele P, Jahnke B, Hentrich V, Ruckert F, Niedergethmann M, Weichert W, Bahra M, Schlitt HJ, Settmacher U, Friess H, Buchler M, Saeger HD, Schroeder M, Pilarsky C, Grutzmann R (2012) Google goes cancer: improving outcome prediction for cancer patients by network-based ranking of marker genes. PLoS Comput Biol 8:e1002511

    PubMed  CAS  Google Scholar 

  123. Camacho DF, Pienta KJ (2012) Disrupting the networks of cancer. Clin Cancer Res 18:2801–2808

    PubMed  CAS  Google Scholar 

  124. Lee MJ, Ye AS, Gardino AK, Heijink AM, Sorger PK, Macbeath G, Yaffe MB (2012) Sequential application of anticancer drugs enhances cell death by rewiring apoptotic signaling networks. Cell 149:780–794

    PubMed  CAS  Google Scholar 

  125. Erler JT, Linding R (2012) Network medicine strikes a blow against breast cancer. Cell 149:731–733

    PubMed  CAS  Google Scholar 

  126. Nevins JR, Potti A (2007) Mining gene expression profiles: expression signatures as cancer phenotypes. Nat Rev Genet 8:601–609

    PubMed  CAS  Google Scholar 

  127. Sjoblom T, Jones S, Wood LD, Parsons DW, Lin J, Barber TD, Mandelker D, Leary RJ, Ptak J, Silliman N, Szabo S, Buckhaults P, Farrell C, Meeh P, Markowitz SD, Willis J, Dawson D, Willson JK, Gazdar AF, Hartigan J, Wu L, Liu C, Parmigiani G, Park BH, Bachman KE, Papadopoulos N, Vogelstein B, Kinzler KW, Velculescu VE (2006) The consensus coding sequences of human breast and colorectal cancers. Science 314:268–274

    PubMed  Google Scholar 

  128. Chen HY, Yu SL, Chen CH, Chang GC, Chen CY, Yuan A, Cheng CL, Wang CH, Terng HJ, Kao SF, Chan WK, Li HN, Liu CC, Singh S, Chen WJ, Chen JJ, Yang PC (2007) A five-gene signature and clinical outcome in non-small-cell lung cancer. N Engl J Med 356:11–20

    PubMed  CAS  Google Scholar 

  129. Jones S, Zhang X, Parsons DW, Lin JC, Leary RJ, Angenendt P, Mankoo P, Carter H, Kamiyama H, Jimeno A, Hong SM, Fu B, Lin MT, Calhoun ES, Kamiyama M, Walter K, Nikolskaya T, Nikolsky Y, Hartigan J, Smith DR, Hidalgo M, Leach SD, Klein AP, Jaffee EM, Goggins M, Maitra A, Iacobuzio-Donahue C, Eshleman JR, Kern SE, Hruban RH, Karchin R, Papadopoulos N, Parmigiani G, Vogelstein B, Velculescu VE, Kinzler KW (2008) Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science 321:1801–1806

    PubMed  CAS  Google Scholar 

  130. Parsons DW, Jones S, Zhang X, Lin JC, Leary RJ, Angenendt P, Mankoo P, Carter H, Siu IM, Gallia GL, Olivi A, McLendon R, Rasheed BA, Keir S, Nikolskaya T, Nikolsky Y, Busam DA, Tekleab H, Diaz LA Jr, Hartigan J, Smith DR, Strausberg RL, Marie SK, Shinjo SM, Yan H, Riggins GJ, Bigner DD, Karchin R, Papadopoulos N, Parmigiani G, Vogelstein B, Velculescu VE, Kinzler KW (2008) An integrated genomic analysis of human glioblastoma multiforme. Science 321:1807–1812

    PubMed  CAS  Google Scholar 

  131. Pawson T, Linding R (2008) Network medicine. FEBS Lett 582:1266–1270

    PubMed  CAS  Google Scholar 

  132. Antman E, Weiss S, Loscalzo J (2012) Systems pharmacology, pharmacogenetics, and clinical trial design in network medicine. Wiley Interdiscip Rev Syst Biol Med 4:367–383

    Google Scholar 

  133. Barabasi AL (2007) Network medicine–from obesity to the “diseasome”. N Engl J Med 357:404–407

    PubMed  CAS  Google Scholar 

  134. Zanzoni A, Soler-Lopez M, Aloy P (2009) A network medicine approach to human disease. FEBS Lett 583:1759–1765

    PubMed  CAS  Google Scholar 

  135. Ghosh S, Basu A (2012) Network medicine in drug design: implications for neuroinflammation. Drug Discov Today 17:600–607

    PubMed  CAS  Google Scholar 

  136. Loscalzo J, Barabasi AL (2011) Systems biology and the future of medicine. Wiley Interdiscip Rev Syst Biol Med 3:619–627

    PubMed  Google Scholar 

  137. Goh KI, Cusick ME, Valle D, Childs B, Vidal M, Barabasi AL (2007) The human disease network. Proc Natl Acad Sci USA 104:8685–8690

    PubMed  CAS  Google Scholar 

  138. Lee DS, Park J, Kay KA, Christakis NA, Oltvai ZN, Barabasi AL (2008) The implications of human metabolic network topology for disease comorbidity. Proc Natl Acad Sci USA 105:9880–9885

    PubMed  CAS  Google Scholar 

  139. Hidalgo CA, Blumm N, Barabasi AL, Christakis NA (2009) A dynamic network approach for the study of human phenotypes. PLoS Comput Biol 5:e1000353

    PubMed  Google Scholar 

  140. Zhang M, Zhu C, Jacomy A, Lu LJ, Jegga AG (2011) The orphan disease networks. Am J Hum Genet 88:755–766

    PubMed  CAS  Google Scholar 

  141. Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100:57–70

    PubMed  CAS  Google Scholar 

  142. Karr JR, Sanghvi JC, Macklin DN, Gutschow MV, Jacobs JM, Bolivar B Jr, Assad-García N, Glass JI, Covert MW (2012) A whole-cell computational model predicts phenotype from genotype. Cell 150:389–401

    PubMed  CAS  Google Scholar 

  143. Freddolino PL, Tavazoie S (2012) The dawn of virtual cell biology. Cell 150:248–250

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Our experimental work is supported by grants PS09/02216 (Spanish Ministry of Science and Innovation and FEDER) and PIE P08-CTS-3759, CVI-6585 and funds from group BIO-267 (Andalusian Government and FEDER). The “CIBER de Enfermedades Raras” is an initiative from the ISCIII (Spain).

Conflict of interest

The author declares that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel Ángel Medina.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 50 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Medina, M.Á. Systems biology for molecular life sciences and its impact in biomedicine. Cell. Mol. Life Sci. 70, 1035–1053 (2013). https://doi.org/10.1007/s00018-012-1109-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-012-1109-z

Keywords

Navigation