Skip to main content

Advertisement

Log in

Genomic instability in breast and ovarian cancers: translation into clinical predictive biomarkers

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Breast and ovarian cancer are among the most common malignancies diagnosed in women worldwide. Together, they account for the majority of cancer-related deaths in women. These cancer types share a number of features, including their association with hereditary cancer syndromes caused by heterozygous germline mutations in BRCA1 or BRCA2. BRCA-associated breast and ovarian cancers are hallmarked by genomic instability and high sensitivity to DNA double-strand break (DSB) inducing agents due to loss of error-free DSB repair via homologous recombination (HR). Recently, poly(ADP-ribose) polymerase inhibitors, a new class of drugs that selectively target HR-deficient tumor cells, have been shown to be highly active in BRCA-associated breast and ovarian cancers. This finding has renewed interest in hallmarks of HR deficiency and the use of other DSB-inducing agents, such as platinum salts or bifunctional alkylators, in breast and ovarian cancer patients. In this review we discuss the similarities between breast and ovarian cancer, the hallmarks of genomic instability in BRCA-mutated and BRCA-like breast and ovarian cancers, and the efforts to search for predictive markers of HR deficiency in order to individualize therapy in breast and ovarian cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

8-OHdG:

8-Hydroxy-2′-deoxyguanosine

aCGH:

Array comparative genomic hybridization

AC:

Adriamycin–cyclophosphamide

AR:

Androgen receptor

AT:

Doxorubicin–docetaxel

BCSS:

Breast cancer-specific survival

BER:

Base excision repair

BLBC:

Basal-like breast cancer

CIN:

Chromosomal instability

CK:

Cytokeratin

CNA:

Copy number aberration

CS:

Cockayne syndrome

CMF:

Cyclophosphamide–methotrexate–5-fluorouracil

DFS:

Disease-free survival

DSB:

Double-strand break

E2:

Estrogen

ERE:

Estrogen responsive element

ER:

Estrogen receptor

FA:

Fanconi anemia

FAC:

5-Fluorouracil–adriamycin–cyclophosphamide

FEC:

5-Fluorouracil–epirubicin–cyclophosphamide

FFPE:

Formalin-fixed paraffin-embedded

HER2:

Human epidermal growth factor receptor-2

HR:

Homologous recombination

HRT:

Hormone replacement therapy

IHC:

Immunohistochemistry

ILC:

Invasive lobular carcinoma

LBD:

Ligand binding domain

MMR:

Mismatch repair

MRN-complex:

MRE11–RAD50–NBS1 complex

NER:

Nucleotide excision repair

NHEJ:

Non-homologous end joining

PARP:

Poly(ADP-ribose) polymerase

PARPi:

PARP inhibitors

pCR:

Pathological complete remission

PFS:

Progression-free survival

PgR:

Progesterone receptor

PRE:

Progesterone binding element

OS:

Overall survival

RCT:

Randomized controlled trial

RFS:

Recurrence-free survival

SSB:

Single-strand break

TTD:

Trichothiodystrophy

TN:

Triple-negative

XP:

Xeroderma pigmentosum

References

  1. Ferlay J, Shin HR, Bray F et al (2010) GLOBOCAN 2008, cancer incidence and mortality worldwide: IARC CancerBase No. 10 (Internet). International Agency for Research on Cancer, Lyon. http://globocan.iarc.fr

  2. Ferlay J, Shin HR, Bray F et al (2010) Estimates of Worldwide Burden of Cancer in 2008: GLOBOCAN 2008. Int J Cancer

  3. Harris L, Fritsche H, Mennel R et al (2007) American Society of Clinical Oncology 2007 Update of Recommendations for the Use of Tumor Markers in Breast Cancer. J Clin Oncol 25:5287–5312

    PubMed  CAS  Google Scholar 

  4. Early Breast Cancer Trialists’ Collaborative Group (EBCTCG) (2005) Effects of chemotherapy and hormonal therapy for early breast cancer on recurrence and 15-year survival: an overview of the randomised trials. Lancet 365:1687–1717

    Google Scholar 

  5. Romond EH, Perez EA, Bryant J et al (2005) Trastuzumab plus adjuvant chemotherapy for operable HER2-positive breast cancer. N Engl J Med 353:1673–1684

    PubMed  CAS  Google Scholar 

  6. Joensuu H, Kellokumpu-Lehtinen PL, Bono P et al (2006) Adjuvant docetaxel or vinorelbine with or without trastuzumab for breast cancer. N Engl J Med 354:809–820

    PubMed  CAS  Google Scholar 

  7. Plummer ER, Calvert H (2007) Targeting poly(ADP-Ribose) polymerase: a two-armed strategy for cancer therapy. Clin Cancer Res 13:6252–6256

    PubMed  CAS  Google Scholar 

  8. Ratnam K, Low JA (2007) Current development of clinical inhibitors of poly(ADP-Ribose) polymerase in oncology. Clin Cancer Res 13:1383–1388

    PubMed  CAS  Google Scholar 

  9. Rottenberg S, Nygren AO, Pajic M et al (2007) Selective Induction of chemotherapy resistance of mammary tumors in a conditional mouse model for hereditary breast cancer. Proc Natl Acad Sci USA 104:12117–12122

    PubMed  CAS  Google Scholar 

  10. Futreal PA, Liu Q, Shattuck-Eidens D et al (1994) BRCA1 mutations in primary breast and ovarian carcinomas. Science 266:120–122

    PubMed  CAS  Google Scholar 

  11. Miki Y, Swensen J, Shattuck-Eidens D et al (1994) A strong candidate for the breast and ovarian cancer susceptibility gene BRCA1. Science 266:66–71

    PubMed  CAS  Google Scholar 

  12. Wooster R, Bignell G, Lancaster J et al (1995) Identification of the breast cancer susceptibility gene BRCA2. Nature 378:789–792

    PubMed  CAS  Google Scholar 

  13. Audeh MW, Carmichael J, Penson RT et al (2010) Oral poly(ADP-Ribose) polymerase inhibitor olaparib in patients with BRCA1 or BRCA2 mutations and recurrent ovarian cancer: a proof-of-concept trial. Lancet 376:245–251

    PubMed  CAS  Google Scholar 

  14. Tutt A, Robson M, Garber JE et al (2010) Oral poly(ADP-Ribose) polymerase inhibitor olaparib in patients with BRCA1 or BRCA2 mutations and advanced breast cancer: a proof-of-concept trial. Lancet 376:235–244

    PubMed  CAS  Google Scholar 

  15. World Health Organization (2003) Tumours of the breast and female genital organs (WHO/IARC classification of tumours) (IARC WHO Classification of Tumours). IARC Press, Lyon

  16. Mackay HJ, Brady MF, Oza AM et al (2010) Prognostic relevance of uncommon ovarian histology in women with stage III/IV epithelial ovarian cancer. Int J Gynecol Cancer 20:945–952

    PubMed  Google Scholar 

  17. Arpino G, Bardou VJ, Clark GM, Elledge RM (2004) Infiltrating lobular carcinoma of the breast: tumor characteristics and clinical outcome. Breast Cancer Res 6:R149–R156

    PubMed  Google Scholar 

  18. Rakha EA, El Sayed ME, Powe DG et al (2008) Invasive lobular carcinoma of the breast: response to hormonal therapy and outcomes. Eur J Cancer 44:73–83

    PubMed  Google Scholar 

  19. Perou CM, Sorlie T, Eisen MB et al (2000) Molecular portraits of human breast tumours. Nature 406:747–752

    PubMed  CAS  Google Scholar 

  20. Sorlie T, Perou CM, Tibshirani R et al (2001) Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci USA 98:10869–10874

    PubMed  CAS  Google Scholar 

  21. Sorlie T, Tibshirani R, Parker J et al (2003) Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc Natl Acad Sci USA 100:8418–8423

    PubMed  CAS  Google Scholar 

  22. Sotiriou C, Powles TJ, Dowsett M et al (2002) Gene expression profiles derived from fine needle aspiration correlate with response to systemic chemotherapy in breast cancer. Breast Cancer Res 4:R3

    PubMed  Google Scholar 

  23. Rouzier R, Perou CM, Symmans WF et al (2005) Breast cancer molecular subtypes respond differently to preoperative chemotherapy. Clin Cancer Res 11:5678–5685

    PubMed  CAS  Google Scholar 

  24. Kreike B, van Kouwenhove M, Horlings H et al (2007) Gene expression profiling and histopathological characterization of triple-negative/basal-like breast carcinomas. Breast Cancer Res 9:R65

    PubMed  Google Scholar 

  25. Nielsen TO, Hsu FD, Jensen K et al (2004) Immunohistochemical and clinical characterization of the basal-like subtype of invasive breast carcinoma. Clin Cancer Res 10:5367–5374

    PubMed  CAS  Google Scholar 

  26. Schwartz DR, Kardia SL, Shedden KA et al (2002) Gene expression in ovarian cancer reflects both morphology and biological behavior, distinguishing clear cell from other poor-prognosis ovarian carcinomas. Cancer Res 62:4722–4729

    PubMed  CAS  Google Scholar 

  27. Tothill RW, Tinker AV, George J et al (2008) Novel molecular subtypes of serous and endometrioid ovarian cancer linked to clinical outcome. Clin Cancer Res 14:5198–5208

    PubMed  CAS  Google Scholar 

  28. Bonome T, Lee JY, Park DC et al (2005) Expression profiling of serous low malignant potential, low-grade, and high-grade tumors of the ovary. Cancer Res 65:10602–10612

    PubMed  CAS  Google Scholar 

  29. Singer G, Kurman RJ, Chang HW et al (2002) Diverse tumorigenic pathways in ovarian serous carcinoma. Am J Pathol 160:1223–1228

    PubMed  CAS  Google Scholar 

  30. Singer G, Oldt R III, Cohen Y et al (2003) Mutations in BRAF and KRAS characterize the development of low-grade ovarian serous carcinoma. J Natl Cancer Inst 95:484–486

    PubMed  CAS  Google Scholar 

  31. Wiegand KC, Shah SP, Al-Agha OM et al (2010) ARID1A mutations in endometriosis-associated ovarian carcinomas. N Engl J Med 363:1532–1543

    PubMed  CAS  Google Scholar 

  32. Willner J, Wurz K, Allison KH et al (2007) Alternate molecular genetic pathways in ovarian carcinomas of common histological types. Hum Pathol 38:607–613

    PubMed  CAS  Google Scholar 

  33. Kuo KT, Mao TL, Jones S et al (2009) Frequent activating mutations of PIK3CA in ovarian clear cell carcinoma. Am J Pathol 174:1597–1601

    PubMed  CAS  Google Scholar 

  34. Buttitta F, Felicioni L, Barassi F et al (2006) PIK3CA mutation and histological type in breast carcinoma: high frequency of mutations in lobular carcinoma. J Pathol 208:350–355

    PubMed  CAS  Google Scholar 

  35. Barbareschi M, Buttitta F, Felicioni L et al (2007) Different prognostic roles of mutations in the helical and kinase domains of the PIK3CA gene in breast carcinomas. Clin Cancer Res 13:6064–6069

    PubMed  CAS  Google Scholar 

  36. Omura GA, Brady MF, Homesley HD et al (1991) Long-term follow-up and prognostic factor analysis in advanced ovarian carcinoma: the gynecologic oncology group experience. J Clin Oncol 9:1138–1150

    PubMed  CAS  Google Scholar 

  37. Cristofanilli M, Gonzalez-Angulo A, Sneige N et al (2005) Invasive lobular carcinoma classic type: response to primary chemotherapy and survival outcomes. J Clin Oncol 23:41–48

    PubMed  Google Scholar 

  38. Crotzer DR, Sun CC, Coleman RL et al (2007) Lack of effective systemic therapy for recurrent clear cell carcinoma of the ovary. Gynecol Oncol 105:404–408

    PubMed  Google Scholar 

  39. Kuo KT, Mao TL, Chen X et al (2010) DNA copy numbers profiles in affinity-purified ovarian clear cell carcinoma. Clin Cancer Res 16:1997–2008

    PubMed  CAS  Google Scholar 

  40. Weigelt B, Geyer FC, Natrajan R et al (2010) The molecular underpinning of lobular histological growth pattern: a genome-wide transcriptomic analysis of invasive lobular carcinomas and grade- and molecular subtype-matched invasive ductal carcinomas of no special type. J Pathol 220:45–57

    PubMed  CAS  Google Scholar 

  41. Bergamaschi A, Kim YH, Wang P et al (2006) Distinct patterns of DNA copy number alteration are associated with different clinicopathological features and gene-expression subtypes of breast cancer. Genes Chromosomes Cancer 45:1033–1040

    PubMed  CAS  Google Scholar 

  42. Melchor L, Honrado E, Garcia MJ et al (2008) Distinct genomic aberration patterns are found in familial breast cancer associated with different immunohistochemical subtypes. Oncogene 27:3165–3175

    PubMed  CAS  Google Scholar 

  43. Prosser J, Thompson AM, Cranston G, Evans HJ (1990) Evidence that P53 behaves as a tumour suppressor gene in sporadic breast tumours. Oncogene 5:1573–1579

    PubMed  CAS  Google Scholar 

  44. Borresen-Dale AL (2003) TP53 and breast cancer. Hum Mutat 21:292–300

    PubMed  CAS  Google Scholar 

  45. Kohler MF, Marks JR, Wiseman RW et al (1993) Spectrum of mutation and frequency of allelic deletion of the P53 gene in ovarian cancer. J Natl Cancer Inst 85:1513–1519

    PubMed  CAS  Google Scholar 

  46. Kupryjanczyk J, Thor AD, Beauchamp R et al (1993) P53 gene mutations and protein accumulation in human ovarian cancer. Proc Natl Acad Sci USA 90:4961–4965

    PubMed  CAS  Google Scholar 

  47. Wen WH, Reles A, Runnebaum IB et al (1999) P53 mutations and expression in ovarian cancers: correlation with overall survival. Int J Gynecol Pathol 18:29–41

    PubMed  CAS  Google Scholar 

  48. Singer G, Stohr R, Cope L et al (2005) Patterns of P53 mutations separate ovarian serous borderline tumors and low- and high-grade carcinomas and provide support for a new model of ovarian carcinogenesis: a mutational analysis with immunohistochemical correlation. Am J Surg Pathol 29:218–224

    PubMed  Google Scholar 

  49. Manie E, Vincent-Salomon A, Lehmann-Che J et al (2009) High frequency of TP53 mutation in BRCA1 and sporadic basal-like carcinomas but not in BRCA1 luminal breast tumors. Cancer Res 69:663–671

    PubMed  CAS  Google Scholar 

  50. Cannistra SA (2004) Cancer of the ovary. N Engl J Med 351:2519–2529

    PubMed  CAS  Google Scholar 

  51. Kuo KT, Guan B, Feng Y et al (2009) Analysis of DNA copy number alterations in ovarian serous tumors identifies new molecular genetic changes in low-grade and high-grade carcinomas. Cancer Res 69:4036–4042

    PubMed  CAS  Google Scholar 

  52. Holstege H, Joosse SA, van Oostrom CT et al (2009) High Incidence of protein-truncating TP53 mutations in BRCA1-related breast cancer. Cancer Res 69:3625–3633

    PubMed  CAS  Google Scholar 

  53. Hennessy BT, Timms KM, Carey MS et al (2010) Somatic mutations in BRCA1 and BRCA2 could expand the number of patients that benefit from poly (ADP Ribose) polymerase inhibitors in ovarian cancer. J Clin Oncol 28:3570–3576

    PubMed  Google Scholar 

  54. Easton DF, Bishop DT, Ford D, Crockford GP (1993) Genetic linkage analysis in familial breast and ovarian cancer: results from 214 families. The Breast Cancer Linkage Consortium. Am J Hum Genet 52:678–701

    PubMed  CAS  Google Scholar 

  55. Chen S, Parmigiani G (2007) Meta-analysis of BRCA1 and BRCA2 penetrance. J Clin Oncol 25:1329–1333

    PubMed  Google Scholar 

  56. Pruthi S, Gostout BS, Lindor NM (2010) Identification and management of women with BRCA mutations or hereditary predisposition for breast and ovarian cancer. Mayo Clin Proc 85:1111–1120

    PubMed  Google Scholar 

  57. The Breast Cancer Linkage Consortium (1999) Cancer risks in BRCA2 mutation carriers. The Breast Cancer Linkage Consortium. J Natl Cancer Inst 91:1310–1316

    Google Scholar 

  58. Thompson D, Easton DF (2002) Cancer incidence in BRCA1 mutation carriers. J Natl Cancer Inst 94:1358–1365

    PubMed  CAS  Google Scholar 

  59. van Gent DC, Hoeijmakers JH, Kanaar R (2001) Chromosomal stability and the DNA double-stranded break connection. Nat Rev Genet 2:196–206

    PubMed  Google Scholar 

  60. Boveri T (2008) Concerning the origin of malignant tumours by Theodor Boveri. Translated and annotated by Henry Harris. J Cell Sci 121(Suppl 1):1–84

    PubMed  Google Scholar 

  61. Hoeijmakers JH (2001) Genome maintenance mechanisms for preventing cancer. Nature 411:366–374

    PubMed  CAS  Google Scholar 

  62. Hartlerode AJ, Scully R (2009) Mechanisms of double-strand break repair in somatic mammalian cells. Biochem J 423:157–168

    PubMed  CAS  Google Scholar 

  63. Pardo B, Gomez-Gonzalez B, Aguilera A (2009) DNA repair in mammalian cells: DNA double-strand break repair: how to fix a broken relationship. Cell Mol Life Sci 66:1039–1056

    PubMed  CAS  Google Scholar 

  64. Dinkelmann M, Spehalski E, Stoneham T et al (2009) Multiple functions of MRN in end-joining pathways during isotype class switching. Nat Struct Mol Biol 16:808–813

    PubMed  CAS  Google Scholar 

  65. Huen MS, Sy SM, Chen J (2010) BRCA1 and its toolbox for the maintenance of genome integrity. Nat Rev Mol Cell Biol 11:138–148

    PubMed  CAS  Google Scholar 

  66. Kennedy RD, D’Andrea AD (2005) The Fanconi anemia/BRCA pathway: new faces in the crowd. Genes Dev 19:2925–2940

    PubMed  CAS  Google Scholar 

  67. Cleaver JE, Lam ET, Revet I (2009) Disorders of nucleotide excision repair: the genetic and molecular basis of heterogeneity. Nat Rev Genet 10:756–768

    PubMed  CAS  Google Scholar 

  68. Bootsma D, Kraemer K, Cleaver J, Hoeijmakers JH (2001) Nucleotide excision repair syndromes: xeroderma pigmentosum, Cockayne syndrome and trichothiodystrophy. In: Vogelstein B, Kinzler K (eds) The genetic basis of human cancer, 2nd edn. McGraw-Hill, New York, pp 677–703

    Google Scholar 

  69. Khan SG, Oh KS, Shahlavi T et al (2006) Reduced XPC DNA repair gene MRNA levels in clinically normal parents of xeroderma pigmentosum patients. Carcinogenesis 27:84–94

    PubMed  CAS  Google Scholar 

  70. van der Horst GT, van Steeg H, Berg RJ et al (1997) Defective transcription-coupled repair in Cockayne syndrome B mice is associated with skin cancer predisposition. Cell 89:425–435

    PubMed  Google Scholar 

  71. de Boer J, van Steeg H, Berg RJ et al (1999) Mouse model for the DNA repair/basal transcription disorder trichothiodystrophy reveals cancer predisposition. Cancer Res 59:3489–3494

    PubMed  Google Scholar 

  72. Lengauer C, Kinzler KW, Vogelstein B (1998) Genetic instabilities in human cancers. Nature 396:643–649

    PubMed  CAS  Google Scholar 

  73. David SS, O’Shea VL, Kundu S (2007) Base-excision repair of oxidative DNA damage. Nature 447:941–950

    PubMed  CAS  Google Scholar 

  74. Taverna P, Hwang HS, Schupp JE et al (2003) Inhibition of base excision repair potentiates iododeoxyuridine-induced cytotoxicity and radiosensitization. Cancer Res 63:838–846

    PubMed  CAS  Google Scholar 

  75. De Alencar TA, Leitao AC, Lage C (2005) Nitrogen mustard- and half-mustard-induced damage in Escherichia coli requires different DNA repair pathways. Mutat Res 582:105–115

    PubMed  Google Scholar 

  76. McNeill DR, Lam W, DeWeese TL et al (2009) Impairment of APE1 function enhances cellular sensitivity to clinically relevant alkylators and antimetabolites. Mol Cancer Res 7:897–906

    PubMed  CAS  Google Scholar 

  77. Sweasy JB, Lang T, DiMaio D (2006) Is base excision repair a tumor suppressor mechanism? Cell Cycle 5:250–259

    PubMed  CAS  Google Scholar 

  78. Kinsella TJ (2009) Coordination of DNA mismatch repair and base excision repair processing of chemotherapy and radiation damage for targeting resistant cancers. Clin Cancer Res 15:1853–1859

    PubMed  CAS  Google Scholar 

  79. Dantzer F, de La Rubia G, Menissier-De Murcia J et al (2000) Base excision repair is impaired in mammalian cells lacking poly(ADP-Ribose) polymerase-1. Biochemistry 39:7559–7569

    PubMed  CAS  Google Scholar 

  80. Tebbs RS, Flannery ML, Meneses JJ et al (1999) Requirement for the Xrcc1 DNA base excision repair gene during early mouse development. Dev Biol 208:513–529

    PubMed  CAS  Google Scholar 

  81. Al Tassan N, Chmiel NH, Maynard J et al (2002) Inherited variants of MYH associated with somatic G:C–>T:A mutations in colorectal tumors. Nat Genet 30:227–232

    PubMed  CAS  Google Scholar 

  82. Sampson JR, Dolwani S, Jones S et al (2003) Autosomal-recessive colorectal adenomatous polyposis due to inherited mutations of MYH. Lancet 362:39–41

    PubMed  CAS  Google Scholar 

  83. Jiricny J (2006) The multifaceted mismatch-repair system. Nat Rev Mol Cell Biol 7:335–346

    PubMed  CAS  Google Scholar 

  84. Hewish M, Lord CJ, Martin SA et al (2010) Mismatch repair deficient colorectal cancer in the era of personalized treatment. Nat Rev Clin Oncol 7:197–208

    PubMed  Google Scholar 

  85. de Wind N, Dekker M, Berns A et al (1995) Inactivation of the Mouse Msh2 gene results in mismatch repair deficiency, methylation tolerance, hyperrecombination, and predisposition to cancer. Cell 82:321–330

    PubMed  Google Scholar 

  86. Edelmann W, Cohen PE, Kane M et al (1996) Meiotic pachytene arrest in MLH1-deficient mice. Cell 85:1125–1134

    PubMed  CAS  Google Scholar 

  87. Parsons R, Li GM, Longley MJ et al (1993) Hypermutability and mismatch repair deficiency in RER+ tumor cells. Cell 75:1227–1236

    PubMed  CAS  Google Scholar 

  88. Martin SA, McCarthy A, Barber LJ et al (2009) Methotrexate induces oxidative DNA damage and is selectively lethal to tumour cells with defects in the DNA mismatch repair gene MSH2. EMBO Mol Med 1:323–337

    PubMed  CAS  Google Scholar 

  89. Evers B, Schut E, van der BE et al (2010) A high-throughput pharmaceutical screen identifies compounds with specific toxicity against BRCA2-deficient tumors. Clin Cancer Res 16:99–108

    PubMed  CAS  Google Scholar 

  90. Martin SA, McCabe N, Mullarkey M et al (2010) DNA polymerases as potential therapeutic targets for cancers deficient in the DNA mismatch repair proteins MSH2 or MLH1. Cancer Cell 17:235–248

    PubMed  CAS  Google Scholar 

  91. Arnaudeau C, Lundin C, Helleday T (2001) DNA double-strand breaks associated with replication forks are predominantly repaired by homologous recombination involving an exchange mechanism in mammalian cells. J Mol Biol 307:1235–1245

    PubMed  CAS  Google Scholar 

  92. Jaspers JE, Rottenberg S, Jonkers J (2009) Therapeutic options for triple-negative breast cancers with defective homologous recombination. Biochim Biophys Acta 1796:266–280

    PubMed  CAS  Google Scholar 

  93. Turner N, Tutt A, Ashworth A (2004) Hallmarks of ‘BRCAness’ in sporadic cancers. Nat Rev Cancer 4:814–819

    PubMed  CAS  Google Scholar 

  94. Cancer Genome Atlas Research Network (2011) Integrated genomic analyses of ovarian carcinoma. Nature 474:609–615

    Google Scholar 

  95. Chalasani P, Kurtin S, Dragovich T (2008) Response to a third-line mitomycin C(MMC)-based chemotherapy in a patient with metastatic pancreatic adenocarcinoma carrying germline BRCA2 mutation. JOP 9:305–308

    PubMed  Google Scholar 

  96. Villarroel MC, Rajeshkumar NV, Garrido-Laguna I et al (2011) Personalizing cancer treatment in the age of global genomic analyses: PALB2 gene mutations and the response to DNA damaging agents in pancreatic cancer. Mol Cancer Ther 10:3–8

    PubMed  CAS  Google Scholar 

  97. Weston VJ, Oldreive CE, Skowronska A et al (2010) The PARP inhibitor olaparib induces significant killing of ATM-deficient lymphoid tumor cells in vitro and in vivo. Blood 116:4578–4587

    PubMed  CAS  Google Scholar 

  98. Chen Q, Van der Sluis PC, Boulware D et al (2005) The FA/BRCA pathway is involved in melphalan-induced DNA interstrand cross-link repair and accounts for melphalan resistance in multiple myeloma cells. Blood 106:698–705

    PubMed  CAS  Google Scholar 

  99. Howlett NG, Taniguchi T, Olson S et al (2002) Biallelic inactivation of BRCA2 in Fanconi anemia. Science 297:606–609

    PubMed  CAS  Google Scholar 

  100. Duker NJ (2002) Chromosome breakage syndromes and cancer. Am J Med Genet 115:125–129

    PubMed  Google Scholar 

  101. Thompson LH, Schild D (2002) Recombinational DNA repair and human disease. Mutat Res 509:49–78

    PubMed  CAS  Google Scholar 

  102. Olsen JH, Hahnemann JM, Borresen-Dale AL et al (2001) Cancer in patients with ataxia-telangiectasia and in their relatives in the Nordic countries. J Natl Cancer Inst 93:121–127

    PubMed  CAS  Google Scholar 

  103. Berwick M, Satagopan JM, Ben Porat L et al (2007) Genetic heterogeneity among Fanconi anemia heterozygotes and risk of cancer. Cancer Res 67:9591–9596

    PubMed  CAS  Google Scholar 

  104. Elledge SJ, Amon A (2002) The BRCA1 suppressor hypothesis: an explanation for the tissue-specific tumor development in BRCA1 patients. Cancer Cell 1:129–132

    PubMed  CAS  Google Scholar 

  105. Lane TF, Deng C, Elson A et al (1995) Expression of Brca1 is associated with terminal differentiation of ectodermally and mesodermally derived tissues in mice. Genes Dev 9:2712–2722

    PubMed  CAS  Google Scholar 

  106. Marquis ST, Rajan JV, Wynshaw-Boris A et al (1995) The developmental pattern of Brca1 expression implies a role in differentiation of the breast and other tissues. Nat Genet 11:17–26

    PubMed  CAS  Google Scholar 

  107. Fan S, Wang J, Yuan R et al (1999) BRCA1 inhibition of estrogen receptor signaling in transfected cells. Science 284:1354–1356

    PubMed  CAS  Google Scholar 

  108. Kawai H, Li H, Chun P et al (2002) Direct interaction between BRCA1 and the estrogen receptor regulates vascular endothelial growth factor (VEGF) transcription and secretion in breast cancer cells. Oncogene 21:7730–7739

    PubMed  CAS  Google Scholar 

  109. Eakin CM, Maccoss MJ, Finney GL, Klevit RE (2007) Estrogen receptor alpha is a putative substrate for the BRCA1 ubiquitin ligase. Proc Natl Acad Sci USA 104:5794–5799

    PubMed  CAS  Google Scholar 

  110. Dizin E, Irminger-Finger I (2010) Negative feedback loop of BRCA1–BARD1 ubiquitin ligase on estrogen receptor alpha stability and activity antagonized by cancer-associated isoform of BARD1. Int J Biochem Cell Biol 42:693–700

    PubMed  CAS  Google Scholar 

  111. Lakhani SR, Van De Vijver MJ, Jacquemier J et al (2002) The pathology of familial breast cancer: predictive value of immunohistochemical markers estrogen receptor, progesterone receptor, HER-2, and P53 in Patients with mutations in BRCA1 and BRCA2. J Clin Oncol 20:2310–2318

    PubMed  CAS  Google Scholar 

  112. Palacios J, Honrado E, Osorio A et al (2005) Phenotypic characterization of BRCA1 and BRCA2 tumors based in a tissue microarray study with 37 immunohistochemical markers. Breast Cancer Res Treat 90:5–14

    PubMed  CAS  Google Scholar 

  113. Lim E, Vaillant F, Wu D et al (2009) Aberrant luminal progenitors as the candidate target population for basal tumor development in BRCA1 mutation carriers. Nat Med 15:907–913

    PubMed  CAS  Google Scholar 

  114. Molyneux G, Geyer FC, Magnay FA et al (2010) BRCA1 basal-like breast cancers originate from luminal epithelial progenitors and not from basal stem cells. Cell Stem Cell 7:403–417

    PubMed  CAS  Google Scholar 

  115. Jin W, Chen Y, Di GH et al (2008) Estrogen receptor (ER) beta or P53 attenuates ERalpha-mediated transcriptional activation on the BRCA2 promoter. J Biol Chem 283:29671–29680

    PubMed  CAS  Google Scholar 

  116. Ma Y, Katiyar P, Jones LP et al (2006) The breast cancer susceptibility gene BRCA1 regulates progesterone receptor signaling in mammary epithelial cells. Mol Endocrinol 20:14–34

    PubMed  CAS  Google Scholar 

  117. Poole AJ, Li Y, Kim Y et al (2006) Prevention of Brca1-mediated mammary tumorigenesis in mice by a progesterone antagonist. Science 314:1467–1470

    PubMed  CAS  Google Scholar 

  118. King TA, Gemignani ML, Li W et al (2004) Increased progesterone receptor expression in benign epithelium of BRCA1-related breast cancers. Cancer Res 64:5051–5053

    PubMed  CAS  Google Scholar 

  119. Mote PA, Leary JA, Avery KA et al (2004) Germ-line mutations in BRCA1 or BRCA2 in the normal breast are associated with altered expression of estrogen-responsive proteins and the predominance of progesterone receptor A. Genes Chromosomes Cancer 39:236–248

    PubMed  CAS  Google Scholar 

  120. Boney-Montoya J, Ziegler YS, Curtis CD et al (2010) Long-range transcriptional control of progesterone receptor gene expression. Mol Endocrinol 24:346–358

    PubMed  CAS  Google Scholar 

  121. Bachelier R, Xu X, Li C et al (2005) Effect of bilateral oophorectomy on mammary tumor formation in BRCA1 mutant mice. Oncol Rep 14:1117–1120

    PubMed  Google Scholar 

  122. Rebbeck TR, Kauff ND, Domchek SM (2009) Meta-analysis of risk reduction estimates associated with risk-reducing salpingo-oophorectomy in BRCA1 or BRCA2 mutation carriers. J Natl Cancer Inst 101:80–87

    PubMed  CAS  Google Scholar 

  123. Park JJ, Irvine RA, Buchanan G et al (2000) Breast cancer susceptibility gene 1 (BRCAI) is a coactivator of the androgen receptor. Cancer Res 60:5946–5949

    PubMed  CAS  Google Scholar 

  124. Yeh S, Hu YC, Rahman M et al (2000) Increase of androgen-induced cell death and androgen receptor transactivation by BRCA1 in prostate cancer cells. Proc Natl Acad Sci USA 97:11256–11261

    PubMed  CAS  Google Scholar 

  125. Shin S, Verma IM (2003) BRCA2 cooperates with histone acetyltransferases in androgen receptor-mediated transcription. Proc Natl Acad Sci USA 100:7201–7206

    PubMed  CAS  Google Scholar 

  126. Berns EM, Dirkzwager-Kiel MJ, Kuenen-Boumeester V et al (2003) Androgen pathway dysregulation in BRCA1-mutated breast tumors. Breast Cancer Res Treat 79:121–127

    PubMed  CAS  Google Scholar 

  127. Swerdlow AJ, Schoemaker MJ, Higgins CD et al (2005) Cancer incidence and mortality in men with Klinefelter syndrome: a cohort study. J Natl Cancer Inst 97:1204–1210

    PubMed  Google Scholar 

  128. Brinton LA, Carreon JD, Gierach GL et al (2010) Etiologic factors for male breast cancer in the U.S. Veterans Affairs medical care system database. Breast Cancer Res Treat 119:185–192

    PubMed  Google Scholar 

  129. Schoemaker MJ, Swerdlow AJ, Higgins CD et al (2008) Cancer incidence in women with turner syndrome in Great Britain: a national cohort study. Lancet Oncol 9:239–246

    PubMed  Google Scholar 

  130. Bosze P, Toth A, Torok M (2006) Hormone replacement and the risk of breast cancer in Turner’s syndrome. N Engl J Med 355:2599–2600

    PubMed  Google Scholar 

  131. Pageau GJ, Hall LL, Ganesan S et al (2007) The disappearing Barr body in breast and ovarian cancers. Nat Rev Cancer 7:628–633

    PubMed  CAS  Google Scholar 

  132. Ganesan S, Silver DP, Greenberg RA et al (2002) BRCA1 supports XIST RNA concentration on the inactive X chromosome. Cell 111:393–405

    PubMed  CAS  Google Scholar 

  133. Richardson AL, Wang ZC, De Nicolo A et al (2006) X chromosomal abnormalities in basal-like human breast cancer. Cancer Cell 9:121–132

    PubMed  CAS  Google Scholar 

  134. Pageau GJ, Lawrence JB (2006) BRCA1 foci in normal s-phase nuclei are linked to interphase centromeres and replication of pericentric heterochromatin. J Cell Biol 175:693–701

    PubMed  CAS  Google Scholar 

  135. Pageau GJ, Hall LL, Lawrence JB (2007) BRCA1 does not paint the inactive X to Localize XIST RNA but may contribute to broad changes in cancer that impact XIST and Xi heterochromatin. J Cell Biochem 100:835–850

    PubMed  CAS  Google Scholar 

  136. Thompson D, Easton D (2002) Variation in BRCA1 cancer risks by mutation position. Cancer Epidemiol Biomarkers Prev 11:329–336

    PubMed  CAS  Google Scholar 

  137. Fong PC, Boss DS, Yap TA et al (2009) Inhibition of poly(ADP-Ribose) polymerase in tumors from BRCA mutation carriers. N Engl J Med 361:123–134

    PubMed  CAS  Google Scholar 

  138. Ledermann JA, Harter P, Gourley C et al (2011) Phase II randomized placebo-controlled study of olaparib (AZD2281) in patients with platinum-sensitive relapsed serous ovarian cancer (PSR SOC). J Clin Oncol 29:abstr 5003

    Google Scholar 

  139. Hayes DF, Bast RC, Desch CE et al (1996) Tumor marker utility grading system: a framework to evaluate clinical utility of tumor markers. J Natl Cancer Inst 88:1456–1466

    PubMed  CAS  Google Scholar 

  140. Kuerer HM, Newman LA, Smith TL et al (1999) Clinical course of breast cancer patients with complete pathologic primary tumor and axillary lymph node response to doxorubicin-based neoadjuvant chemotherapy. J Clin Oncol 17:460–469

    PubMed  CAS  Google Scholar 

  141. Sargent DJ, Conley BA, Allegra C, Collette L (2005) Clinical trial designs for predictive marker validation in cancer treatment trials. J Clin Oncol 23:2020–2027

    PubMed  Google Scholar 

  142. Ben David Y, Chetrit A, Hirsh-Yechezkel G et al (2002) Effect of BRCA mutations on the length of survival in epithelial ovarian tumors. J Clin Oncol 20:463–466

    PubMed  CAS  Google Scholar 

  143. Chetrit A, Hirsh-Yechezkel G, Ben David Y et al (2008) Effect of BRCA1/2 mutations on long-term survival of patients with invasive ovarian cancer: the national Israeli study of ovarian cancer. J Clin Oncol 26:20–25

    PubMed  Google Scholar 

  144. Risch HA, McLaughlin JR, Cole DE et al (2006) Population BRCA1 and BRCA2 mutation frequencies and cancer penetrances: a kin-cohort study in Ontario, Canada. J Natl Cancer Inst 98:1694–1706

    PubMed  CAS  Google Scholar 

  145. Byrski T, Gronwald J, Huzarski T et al (2010) Pathologic complete response rates in young women with BRCA1-positive breast cancers after neoadjuvant chemotherapy. J Clin Oncol 28:375–379

    PubMed  CAS  Google Scholar 

  146. Silver DP, Richardson AL, Eklund AC et al (2010) Efficacy of neoadjuvant cisplatin in triple-negative breast cancer. J Clin Oncol 28:1145–1153

    PubMed  CAS  Google Scholar 

  147. Perez-Valles A, Martorell-Cebollada M, Nogueira-Vazquez E et al (2001) The usefulness of antibodies to the BRCA1 protein in detecting the mutated BRCA1 gene. An immunohistochemical study. J Clin Pathol 54:476–480

    PubMed  CAS  Google Scholar 

  148. Chiang JW, Karlan BY, Cass L, Baldwin RL (2006) BRCA1 promoter methylation predicts adverse ovarian cancer prognosis. Gynecol Oncol 101:403–410

    PubMed  CAS  Google Scholar 

  149. Teodoridis JM, Hall J, Marsh S et al (2005) CpG island methylation of DNA damage response genes in advanced ovarian cancer. Cancer Res 65:8961–8967

    PubMed  CAS  Google Scholar 

  150. Chaudhry P, Srinivasan R, Patel FD (2009) Utility of gene promoter methylation in prediction of response to platinum-based chemotherapy in epithelial ovarian cancer (EOC). Cancer Invest 27:877–884

    PubMed  CAS  Google Scholar 

  151. Buller RE, Shahin MS, Geisler JP et al (2002) Failure of BRCA1 dysfunction to alter ovarian cancer survival. Clin Cancer Res 8:1196–1202

    PubMed  CAS  Google Scholar 

  152. Dejeux E, Ronneberg JA, Solvang H et al (2010) DNA methylation profiling in doxorubicin treated primary locally advanced breast tumours identifies novel genes associated with survival and treatment response. Mol Cancer 9:68

    PubMed  Google Scholar 

  153. Lehmann-Che J, Andre F, Desmedt C et al (2010) Cyclophosphamide dose intensification may circumvent anthracycline resistance of P53 mutant breast cancers. Oncologist 15:246–252

    PubMed  CAS  Google Scholar 

  154. Egawa C, Motomura K, Miyoshi Y et al (2003) Increased expression of BRCA1 MRNA predicts favorable response to anthracycline-containing chemotherapy in breast cancers. Breast Cancer Res Treat 78:45–50

    PubMed  CAS  Google Scholar 

  155. Margeli M, Cirauqui B, Castella E et al (2010) The prognostic value of BRCA1 MRNA expression levels following neoadjuvant chemotherapy in breast cancer. PLoS ONE 5:e9499

    PubMed  Google Scholar 

  156. Quinn JE, James CR, Stewart GE et al (2007) BRCA1 MRNA expression levels predict for overall survival in ovarian cancer after chemotherapy. Clin Cancer Res 13:7413–7420

    PubMed  CAS  Google Scholar 

  157. Weberpals J, Garbuio K, O’Brien A et al (2009) The DNA repair proteins BRCA1 and ERCC1 as predictive markers in sporadic ovarian cancer. Int J Cancer 124:806–815

    PubMed  CAS  Google Scholar 

  158. ‘t Veer LJ, Dai H, Van De Vijver MJ et al (2002) Gene expression profiling predicts clinical outcome of breast cancer. Nature 415:530–536

    PubMed  Google Scholar 

  159. Rodriguez AA, Makris A, Wu MF et al (2010) DNA repair signature is associated with anthracycline response in triple negative breast cancer patients. Breast Cancer Res Treat 123:189–196

    PubMed  CAS  Google Scholar 

  160. Konstantinopoulos PA, Spentzos D, Karlan BY et al (2010) Gene expression profile of BRCAness that correlates with responsiveness to chemotherapy and with outcome in patients with epithelial ovarian cancer. J Clin Oncol

  161. Lips EH, Mulder L, Hannemann J et al (2010) Indicators of homologous recombination deficiency in breast cancer and association with response to neoadjuvant chemotherapy. Ann Oncol

  162. Vollebergh MA, Lips EH, Nederlof PM et al (2010) An ACGH classifier derived from BRCA1-mutated breast cancer and benefit of high-dose platinum-based chemotherapy in HER2-negative breast cancer patients. Ann Oncol

  163. Crown J (2004) Smart bombs versus blunderbusses: high-dose chemotherapy for breast cancer. Lancet 364:1299–1300

    PubMed  Google Scholar 

  164. Huang F, Kushner YB, Langleben A, Foulkes WD (2009) Eleven years disease-free: role of chemotherapy in metastatic BRCA2-related breast cancer. Nat Rev Clin Oncol 6:488–492

    PubMed  CAS  Google Scholar 

  165. Joosse SA, Brandwijk KI, Devilee P et al (2010) Prediction of BRCA2-association in hereditary breast carcinomas using Array-CGH. Breast Cancer Res Treat

  166. Alvarez S, Diaz-Uriarte R, Osorio A et al (2005) A predictor based on the somatic genomic changes of the BRCA1/BRCA2 breast cancer tumors identifies the non-BRCA1/BRCA2 tumors with BRCA1 promoter hypermethylation. Clin Cancer Res 11:1146–1153

    PubMed  CAS  Google Scholar 

  167. Yarden RI, Brody LC (1999) BRCA1 interacts with components of the histone deacetylase complex. Proc Natl Acad Sci USA 96:4983–4988

    PubMed  CAS  Google Scholar 

  168. Bochar DA, Wang L, Beniya H et al (2000) BRCA1 is associated with a human SWI/SNF-related complex: linking chromatin remodeling to breast cancer. Cell 102:257–265

    PubMed  CAS  Google Scholar 

  169. Suijkerbuijk KP, Fackler MJ, Sukumar S et al (2008) Methylation is less abundant in BRCA1-associated compared with sporadic breast cancer. Ann Oncol 19:1870–1874

    PubMed  CAS  Google Scholar 

  170. Flanagan JM, Cocciardi S, Waddell N et al (2010) DNA methylome of familial breast cancer identifies distinct profiles defined by mutation status. Am J Hum Genet 86:420–433

    PubMed  CAS  Google Scholar 

  171. Holm K, Hegardt C, Staaf J et al (2010) Molecular subtypes of breast cancer are associated with characteristic DNA methylation patterns. Breast Cancer Res 12:R36

    PubMed  Google Scholar 

  172. Wiley A, Katsaros D, Chen H et al (2006) Aberrant promoter methylation of multiple genes in malignant ovarian tumors and in ovarian tumors with low malignant potential. Cancer 107:299–308

    PubMed  CAS  Google Scholar 

  173. Sharma SV, Lee DY, Li B et al (2010) A chromatin-mediated reversible drug-tolerant state in cancer cell subpopulations. Cell 141:69–80

    PubMed  CAS  Google Scholar 

  174. Soderlund K, Skoog L, Fornander T, Askmalm MS (2007) The BRCA1/BRCA2/Rad51 complex is a prognostic and predictive factor in early breast cancer. Radiother Oncol 84:242–251

    PubMed  Google Scholar 

  175. Soderlund K, Stal O, Skoog L et al (2007) Intact Mre11/Rad50/Nbs1 complex predicts good response to radiotherapy in early breast cancer. Int J Radiat Oncol Biol Phys 68:50–58

    PubMed  Google Scholar 

  176. Taniguchi T, Tischkowitz M, Ameziane N et al (2003) Disruption of the Fanconi anemia-BRCA pathway in cisplatin-sensitive ovarian tumors. Nat Med 9:568–574

    PubMed  CAS  Google Scholar 

  177. Wang Z, Li M, Lu S et al (2006) Promoter hypermethylation of FANCF plays an important role in the occurrence of ovarian cancer through disrupting Fanconi anemia-BRCA pathway. Cancer Biol Ther 5:256–260

    PubMed  CAS  Google Scholar 

  178. Lim SL, Smith P, Syed N et al (2008) Promoter hypermethylation of FANCF and outcome in advanced ovarian cancer. Br J Cancer 98:1452–1456

    PubMed  CAS  Google Scholar 

  179. Dabholkar M, Vionnet J, Bostick-Bruton F et al (1994) Messenger RNA levels of XPAC and ERCC1 in ovarian cancer tissue correlate with response to platinum-based chemotherapy. J Clin Invest 94:703–708

    PubMed  CAS  Google Scholar 

  180. Dabholkar M, Thornton K, Vionnet J et al (2000) Increased MRNA levels of xeroderma pigmentosum complementation group B (XPB) and Cockayne’s syndrome complementation group B (CSB) without increased MRNA levels of multidrug-resistance gene (MDR1) or metallothionein-II (MT-II) in platinum-resistant human ovarian cancer tissues. Biochem Pharmacol 60:1611–1619

    PubMed  CAS  Google Scholar 

  181. Kang S, Ju W, Kim JW et al (2006) Association between excision repair cross-complementation group 1 polymorphism and clinical outcome of platinum-based chemotherapy in patients with epithelial ovarian cancer. Exp Mol Med 38:320–324

    PubMed  CAS  Google Scholar 

  182. Steffensen KD, Waldstrom M, Jeppesen U et al (2008) Prediction of response to chemotherapy by ERCC1 immunohistochemistry and ERCC1 polymorphism in ovarian cancer. Int J Gynecol Cancer 18:702–710

    PubMed  CAS  Google Scholar 

  183. Steffensen KD, Waldstrom M, Jakobsen A (2009) The relationship of platinum resistance and ERCC1 protein expression in epithelial ovarian cancer. Int J Gynecol Cancer 19:820–825

    PubMed  Google Scholar 

  184. Walsh CS, Ogawa S, Karahashi H et al (2008) ERCC5 is a novel biomarker of ovarian cancer prognosis. J Clin Oncol 26:2952–2958

    PubMed  CAS  Google Scholar 

  185. Olaussen KA, Dunant A, Fouret P et al (2006) DNA repair by ERCC1 in non-small-cell lung cancer and cisplatin-based adjuvant chemotherapy. N Engl J Med 355:983–991

    PubMed  CAS  Google Scholar 

  186. Al Attar A, Gossage L, Fareed KR et al (2010) Human apurinic/apyrimidinic endonuclease (APE1) is a prognostic factor in ovarian, gastro-oesophageal and pancreatico-biliary cancers. Br J Cancer 102:704–709

    PubMed  CAS  Google Scholar 

  187. Jaremko M, Justenhoven C, Schroth W et al (2007) Polymorphism of the DNA repair enzyme XRCC1 is associated with treatment prediction in anthracycline and cyclophosphamide/methotrexate/5-fluorouracil-based chemotherapy of patients with primary invasive breast cancer. Pharmacogenet Genomics 17:529–538

    PubMed  CAS  Google Scholar 

  188. Bewick MA, Conlon MS, Lafrenie RM (2006) Polymorphisms in XRCC1, XRCC3, and CCND1 and survival after treatment for metastatic breast cancer. J Clin Oncol 24:5645–5651

    PubMed  CAS  Google Scholar 

  189. Aebi S, Kurdi-Haidar B, Gordon R et al (1996) Loss of DNA mismatch repair in acquired resistance to cisplatin. Cancer Res 56:3087–3090

    PubMed  CAS  Google Scholar 

  190. Mackay HJ, Cameron D, Rahilly M et al (2000) Reduced MLH1 expression in breast tumors after primary chemotherapy predicts disease-free survival. J Clin Oncol 18:87–93

    PubMed  Google Scholar 

  191. Samimi G, Fink D, Varki NM et al (2000) Analysis of MLH1 and MSH2 expression in ovarian cancer before and after platinum drug-based chemotherapy. Clin Cancer Res 6:1415–1421

    PubMed  CAS  Google Scholar 

  192. Scartozzi M, De Nictolis M, Galizia E et al (2003) Loss of HMLH1 expression correlates with improved survival in stage III–IV ovarian cancer patients. Eur J Cancer 39:1144–1149

    PubMed  CAS  Google Scholar 

  193. Gifford G, Paul J, Vasey PA et al (2004) The acquisition of HMLH1 methylation in plasma DNA after chemotherapy predicts poor survival for ovarian cancer patients. Clin Cancer Res 10:4420–4426

    PubMed  CAS  Google Scholar 

  194. Wild PJ, Reichle A, Andreesen R et al (2004) Microsatellite instability predicts poor short-term survival in patients with advanced breast cancer after high-dose chemotherapy and autologous stem-cell transplantation. Clin Cancer Res 10:556–564

    PubMed  CAS  Google Scholar 

  195. Helleman J, van Staveren IL, Dinjens WN et al (2006) Mismatch repair and treatment resistance in ovarian cancer. BMC Cancer 6:201

    PubMed  Google Scholar 

  196. Chintamani Jha BP, Bhandari V et al (2007) The expression of mismatched repair genes and their correlation with clinicopathological parameters and response to neo-adjuvant chemotherapy in breast cancer. Int Semin Surg Oncol 4:5

    Google Scholar 

  197. Materna V, Surowiak P, Markwitz E et al (2007) Expression of factors involved in regulation of DNA mismatch repair- and apoptosis pathways in ovarian cancer patients. Oncol Rep 17:505–516

    PubMed  CAS  Google Scholar 

  198. Joosse SA, van Beers EH, Tielen IH et al (2009) Prediction of BRCA1-association in hereditary non-BRCA1/2 breast carcinomas with Array-CGH. Breast Cancer Res Treat 116:479–489

    PubMed  CAS  Google Scholar 

  199. Stefansson OA, Jonasson JG, Johannsson OT et al (2009) Genomic profiling of breast tumours in relation to BRCA abnormalities and phenotypes. Breast Cancer Res 11:R47

    PubMed  Google Scholar 

  200. Holstege H, van BE, Velds A et al (2010) Cross-species comparison of ACGH data from mouse and human B. BMC Cancer 10:455

    PubMed  CAS  Google Scholar 

  201. Smid M, Hoes M, Sieuwerts AM et al (2010) Patterns and incidence of chromosomal instability and their prognostic relevance in breast cancer subtypes. Breast Cancer Res Treat

  202. Juul N, Wang Y, Kim J et al (2009) A genomic-profile derived summary measure of chromosomal breakpoints predicts response to treatment with the DNA-damaging agent cisplatin. Cancer Res 69:Abstract nr 111

    Google Scholar 

  203. Leunen K, Gevaert O, Daemen A et al (2009) Recurrent copy number alterations in BRCA1-mutated ovarian tumors alter biological pathways. Hum Mutat 30:1693–1702

    PubMed  CAS  Google Scholar 

  204. Meyerson M, Gabriel S, Getz G (2010) Advances in understanding cancer genomes through second-generation sequencing. Nat Rev Genet 11:685–696

    PubMed  CAS  Google Scholar 

  205. Stephens PJ, McBride DJ, Lin ML et al (2009) Complex landscapes of somatic rearrangement in human breast cancer genomes. Nature 462:1005–1010

    PubMed  CAS  Google Scholar 

  206. Varela I, Klijn C, Stephens PJ et al (2010) Somatic structural rearrangements in genetically engineered mouse mammary tumors. Genome Biol 11:R100

    PubMed  CAS  Google Scholar 

  207. Willers H, Taghian AG, Luo CM et al (2009) Utility of DNA repair protein foci for the detection of putative BRCA1 pathway defects in breast cancer biopsies. Mol Cancer Res 7:1304–1309

    PubMed  CAS  Google Scholar 

  208. Asakawa H, Koizumi H, Koike A et al (2010) Prediction of breast cancer sensitivity to neoadjuvant chemotherapy based on status of DNA damage repair proteins. Breast Cancer Res 12:R17

    PubMed  Google Scholar 

  209. Mukhopadhyay A, Elattar A, Cerbinskaite A et al (2010) Development of a functional assay for homologous recombination status in primary cultures of epithelial ovarian tumor and correlation with sensitivity to poly(ADP-Ribose) polymerase inhibitors. Clin Cancer Res 16:2344–2351

    PubMed  CAS  Google Scholar 

  210. Graeser MK, McCarthy A, Lord CJ et al (2010) A marker of homologous recombination predicts pathological complete response to neoadjuvant chemotherapy in primary breast cancer. Clin Cancer Res 16:6159–6168

    PubMed  CAS  Google Scholar 

  211. Edwards SL, Brough R, Lord CJ et al (2008) Resistance to therapy caused by intragenic deletion in BRCA2. Nature 451:1111–1115

    PubMed  CAS  Google Scholar 

  212. Swisher EM, Sakai W, Karlan BY et al (2008) Secondary BRCA1 mutations in BRCA1-mutated ovarian carcinomas with platinum resistance. Cancer Res 68:2581–2586

    PubMed  CAS  Google Scholar 

  213. Bouwman P, Aly A, Escandell JM et al (2010) 53BP1 loss rescues BRCA1 deficiency and is associated with triple-negative and BRCA-mutated breast cancers. Nat Struct Mol Biol 17:688–695

    PubMed  CAS  Google Scholar 

  214. Mendes-Pereira AM, Martin SA, Brough R et al (2009) Synthetic lethal targeting of PTEN mutant cells with PARP inhibitors. EMBO Mol Med 1:315–322

    PubMed  CAS  Google Scholar 

  215. Rottenberg S, Jaspers JE, Kersbergen A et al (2008) High sensitivity of BRCA1-deficient mammary tumors to the PARP inhibitor AZD2281 alone and in combination with platinum drugs. Proc Natl Acad Sci USA 105:17079–17084

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The work in the Linn lab was financially supported by grants from the Dutch Cancer Society (grant NKI 2006-3706) and A Sister’s Hope/Pink Ribbon. Work in the Jonkers lab was supported by the Dutch Cancer Society (grants NKI 2007-3772 and NKI 2008-4116), the Netherlands Organization for Scientific Research (Cancer Systems Biology Center grant and Horizon Breakthrough grant 40-41009-98-9109), CTMM (BreastCare project), TI Pharma (Kinases in Cancer project), and the European Commission project EuroSyStem.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jos Jonkers or Sabine C. Linn.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplemental Table 1 (DOC 164 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vollebergh, M.A., Jonkers, J. & Linn, S.C. Genomic instability in breast and ovarian cancers: translation into clinical predictive biomarkers. Cell. Mol. Life Sci. 69, 223–245 (2012). https://doi.org/10.1007/s00018-011-0809-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-011-0809-0

Keywords

Navigation