Skip to main content

Advertisement

Log in

Faithful after break-up: suppression of chromosomal translocations

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Chromosome integrity in response to chemically or radiation-induced chromosome breaks and the perturbation of ongoing replication forks relies on multiple DNA repair mechanisms. However, repair of these lesions may lead to unwanted chromosome rearrangement if not properly executed or regulated. As these types of chromosomal alterations threaten the cell’s and the organism’s very own survival, multiple systems are developed to avoid or at least limit break-induced chromosomal rearrangements. In this review, we highlight cellular strategies for repressing DNA break-induced chromosomal translocations in multiple model systems including yeast, mouse, and human. These pathways select proper homologous templates or broken DNA ends for the faithful repair of DNA breaks to avoid undesirable chromosomal translocations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Aplan PD (2006) Causes of oncogenic chromosomal translocation. Trends Genet 22:46–55

    PubMed  CAS  Google Scholar 

  2. Rabbitts TH (1994) Chromosomal translocations in human cancer. Nature 372:143–149

    PubMed  CAS  Google Scholar 

  3. Nowell PC, Croce CM (1986) Chromosomal approaches to the molecular basis of neoplasia. Symp Fundam Cancer Res 39:17–29

    PubMed  CAS  Google Scholar 

  4. Zhang Y, Rowley JD (2006) Chromatin structural elements and chromosomal translocations in leukemia. DNA Repair (Amst) 5:1282–1297

    CAS  Google Scholar 

  5. Lee SE, Moore JK, Holmes A, Umezu K, Kolodner RD, Haber JE (1998) Saccharomyces Ku70, Mre11/Rad50 and RPA proteins regulate adaptation to G2/M arrest after DNA damage. Cell 94:399–409

    PubMed  CAS  Google Scholar 

  6. Lieber MR (2008) The mechanism of human nonhomologous DNA end joining. J Biol Chem 283:1–5

    PubMed  CAS  Google Scholar 

  7. Haber JE (2006) Transpositions and translocations induced by site-specific double-strand breaks in budding yeast. DNA Repair (Amst) 5:998–1009

    CAS  Google Scholar 

  8. McVey M, Lee SE (2008) MMEJ repair of double-strand breaks (director’s cut): deleted sequences and alternative endings. Trends Genet 24:529–538

    PubMed  CAS  Google Scholar 

  9. Krogh BO, Symington LS (2004) Recombination proteins in yeast. Annu Rev Genet 38:233–271

    PubMed  CAS  Google Scholar 

  10. Daley JM, Palmbos PL, Wu D, Wilson TE (2005) Nonhomologous end joining in yeast. Annu Rev Genet 39:431–451

    PubMed  CAS  Google Scholar 

  11. Difilippantonio MJ, Zhu J, Chen HT, Meffre E, Nussenzweig MC, Max EE, Ried T, Nussenzweig A (2000) DNA repair protein Ku80 suppresses chromosomal aberrations and malignant transformation. Nature 404:510–514

    PubMed  CAS  Google Scholar 

  12. Weinstock DM, Richardson CA, Elliott B, Jasin M (2006) Modeling oncogenic translocations: distinct roles for double-strand break repair pathways in translocation formation in mammalian cells. DNA Repair (Amst) 5:1065–1074

    CAS  Google Scholar 

  13. Ferguson DO, Sekiguchi JM, Chang S, Frank KM, Gao Y, DePinho RA, Alt FW (2000) The nonhomologous end-joining pathway of DNA repair is required for genomic stability and the suppression of translocations. Proc Natl Acad Sci USA 97:6630–6633

    PubMed  CAS  Google Scholar 

  14. Kolodner RD, Putnam CD, Myung K (2002) Maintenance of genome stability in Saccharomyces cerevisiae. Science 297:552–557

    PubMed  CAS  Google Scholar 

  15. Lopes M, Cotta-Ramusino C, Liberi G, Foiani M (2003) Branch migrating sister chromatid junctions form at replication origins through Rad51/Rad52-independent mechanisms. Mol Cell 12:1499–1510

    PubMed  CAS  Google Scholar 

  16. Myung K, Datta A, Kolodner RD (2001) Suppression of spontaneous chromosomal rearrangements by S phase checkpoint functions in Saccharomyces cerevisiae. Cell 104:397–408

    PubMed  CAS  Google Scholar 

  17. Lemoine FJ, Degtyareva NP, Lobachev K, Petes TD (2005) Chromosomal translocations in yeast induced by low levels of DNA polymerase a model for chromosome fragile sites. Cell 120:587–598

    PubMed  CAS  Google Scholar 

  18. Schwartz M, Zlotorynski E, Goldberg M, Ozeri E, Rahat A, le Sage C, Chen BP, Chen DJ, Agami R, Kerem B (2005) Homologous recombination and nonhomologous end-joining repair pathways regulate fragile site stability. Genes Dev 19:2715–2726

    PubMed  CAS  Google Scholar 

  19. Admire A, Shanks L, Danzl N, Wang M, Weier U, Stevens W, Hunt E, Weinert T (2006) Cycles of chromosome instability are associated with a fragile site and are increased by defects in DNA replication and checkpoint controls in yeast. Genes Dev 20:159–173

    PubMed  CAS  Google Scholar 

  20. Miller RW (1969) Delayed radiation effects in atomic-bomb survivors. Major observations by the Atomic Bomb Casualty Commission are evaluated. Science 166:569–574

    PubMed  CAS  Google Scholar 

  21. Lieber MR, Yu K, Raghavan SC (2006) Roles of nonhomologous DNA end joining, V(D)J recombination, and class switch recombination in chromosomal translocations. DNA Repair (Amst) 5:1234–1245

    CAS  Google Scholar 

  22. Sung PA, Libura J, Richardson C (2006) Etoposide and illegitimate DNA double-strand break repair in the generation of MLL translocations: new insights and new questions. DNA Repair (Amst) 5:1109–1118

    CAS  Google Scholar 

  23. Paques F, Haber JE (1999) Multiple pathways of recombination induced by double-strand breaks in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 63:349–404

    PubMed  CAS  Google Scholar 

  24. Schmidt KH, Wu J, Kolodner RD (2006) Control of translocations between highly diverged genes by Sgs1, the Saccharomyces cerevisiae homolog of the Bloom’s syndrome protein. Mol Cell Biol 26:5406–5420

    PubMed  CAS  Google Scholar 

  25. Lemoine FJ, Degtyareva NP, Kokoska RJ, Petes TD (2008) Reduced levels of DNA polymerase delta induce chromosome fragile site instability in yeast. Mol Cell Biol 28:5359–5368

    PubMed  CAS  Google Scholar 

  26. Wang X, Baumann P (2008) Chromosome fusions following telomere loss are mediated by single-strand annealing. Mol Cell 31:463–473

    PubMed  CAS  Google Scholar 

  27. VanHulle K, Lemoine FJ, Narayanan V, Downing B, Hull K, McCullough C, Bellinger M, Lobachev K, Petes TD, Malkova A (2007) Inverted DNA repeats channel repair of distant double-strand breaks into chromatid fusions and chromosomal rearrangements. Mol Cell Biol 27:2601–2614

    PubMed  CAS  Google Scholar 

  28. Xie A, Puget N, Shim I, Odate S, Jarzyna I, Bassing CH, Alt FW, Scully R (2004) Control of sister chromatid recombination by histone H2AX. Mol Cell 16:1017–1025

    PubMed  CAS  Google Scholar 

  29. Gonzalez-Barrera S, Cortes-Ledesma F, Wellinger RE, Aguilera A (2003) Equal sister chromatid exchange is a major mechanism of double-strand break repair in yeast. Mol Cell 11:1661–1671

    PubMed  CAS  Google Scholar 

  30. Chaganti RS, Schonberg S, German J (1974) A manyfold increase in sister chromatid exchanges in Bloom’s syndrome lymphocytes. Proc Natl Acad Sci USA 71:4508–4512

    PubMed  CAS  Google Scholar 

  31. Fasullo M, Bennett T, AhChing P, Koudelik J (1998) The Saccharomyces cerevisiae RAD9 checkpoint reduces the DNA damage-associated stimulation of directed translocations. Mol Cell Biol 18:1190–1200

    PubMed  CAS  Google Scholar 

  32. Cortes-Ledesma F, Tous C, Aguilera A (2007) Different genetic requirements for repair of replication-born double-strand breaks by sister-chromatid recombination and break-induced replication. Nucleic Acids Res 35:6560–6570

    PubMed  CAS  Google Scholar 

  33. Strom L, Sjogren C (2007) Chromosome segregation and double-strand break repair—a complex connection. Curr Opin Cell Biol 19:344–349

    PubMed  Google Scholar 

  34. Gruber S, Haering CH, Nasmyth K (2003) Chromosomal cohesin forms a ring. Cell 112:765–777

    PubMed  CAS  Google Scholar 

  35. Haering CH, Lowe J, Hochwagen A, Nasmyth K (2002) Molecular architecture of SMC proteins and the yeast cohesin complex. Mol Cell 9:773–788

    PubMed  CAS  Google Scholar 

  36. Haering CH, Farcas AM, Arumugam P, Metson J, Nasmyth K (2008) The cohesin ring concatenates sister DNA molecules. Nature 454:297–301

    PubMed  CAS  Google Scholar 

  37. Gruber S, Arumugam P, Katou Y, Kuglitsch D, Helmhart W, Shirahige K, Nasmyth K (2006) Evidence that loading of cohesin onto chromosomes involves opening of its SMC hinge. Cell 127:523–537

    PubMed  CAS  Google Scholar 

  38. Strom L, Lindroos HB, Shirahige K, Sjogren C (2004) Postreplicative recruitment of cohesin to double-strand breaks is required for DNA repair. Mol Cell 16:1003–1015

    PubMed  Google Scholar 

  39. Unal E, Arbel-Eden A, Sattler U, Shroff R, Lichten M, Haber JE, Koshland D (2004) DNA damage response pathway uses histone modification to assemble a double-strand break-specific cohesin domain. Mol Cell 16:991–1002

    PubMed  Google Scholar 

  40. Strom L, Karlsson C, Lindroos HB, Wedahl S, Katou Y, Shirahige K, Sjogren C (2007) Postreplicative formation of cohesion is required for repair and induced by a single DNA break. Science 317:242–245

    PubMed  Google Scholar 

  41. Celeste A, Petersen S, Romanienko PJ, Fernandez-Capetillo O, Chen HT, Sedelnikova OA, Reina-San-Martin B, Coppola V, Meffre E, Difilippantonio MJ, Redon C, Pilch DR, Olaru A, Eckhaus M, Camerini-Otero RD, Tessarollo L, Livak F, Manova K, Bonner WM, Nussenzweig MC, Nussenzweig A (2002) Genomic instability in mice lacking histone H2AX. Science 296:922–927

    PubMed  CAS  Google Scholar 

  42. Bassing CH, Suh H, Ferguson DO, Chua KF, Manis J, Eckersdorff M, Gleason M, Bronson R, Lee C, Alt FW (2003) Histone H2AX: a dosage-dependent suppressor of oncogenic translocations and tumors. Cell 114:359–370

    PubMed  CAS  Google Scholar 

  43. De Piccoli G, Cortes-Ledesma F, Ira G, Torres-Rosell J, Uhle S, Farmer S, Hwang JY, Machin F, Ceschia A, McAleenan A, Cordon-Preciado V, Clemente-Blanco A, Vilella-Mitjana F, Ullal P, Jarmuz A, Leitao B, Bressan D, Dotiwala F, Papusha A, Zhao X, Myung K, Haber JE, Aguilera A, Aragon L (2006) Smc5-Smc6 mediate DNA double-strand-break repair by promoting sister-chromatid recombination. Nat Cell Biol 8:1032–1034

    PubMed  Google Scholar 

  44. Liang B, Qiu J, Ratnakumar K, Laurent BC (2007) RSC functions as an early double-strand-break sensor in the cell’s response to DNA damage. Curr Biol 17:1432–1437

    PubMed  CAS  Google Scholar 

  45. Ira G, Pellicioli A, Balijja A, Wang X, Fiorani S, Carotenuto W, Liberi G, Bressan D, Wan L, Hollingsworth NM, Haber JE, Foiani M (2004) DNA end resection, homologous recombination and DNA damage checkpoint activation require CDK1. Nature 431:1011–1017

    PubMed  CAS  Google Scholar 

  46. Aylon Y, Liefshitz B, Kupiec M (2004) The CDK regulates repair of double-strand breaks by homologous recombination during the cell cycle. EMBO J 23:4868–4875

    PubMed  CAS  Google Scholar 

  47. Huertas P, Cortes-Ledesma F, Sartori AA, Aguilera A, Jackson SP (2008) CDK targets Sae2 to control DNA-end resection and homologous recombination. Nature 455:689–692

    PubMed  CAS  Google Scholar 

  48. Gravel S, Chapman JR, Magill C, Jackson SP (2008) DNA helicases Sgs1 and BLM promote DNA double-strand break resection. Genes Dev 22:2767–2772

    PubMed  CAS  Google Scholar 

  49. Mimitou EP, Symington LS (2008) Sae2, Exo1 and Sgs1 collaborate in DNA double-strand break processing. Nature 455:770–774

    PubMed  CAS  Google Scholar 

  50. Zhu Z, Chung WH, Shim EY, Lee SE, Ira G (2008) Sgs1 helicase and two nucleases Dna2 and Exo1 resect DNA double-strand break ends. Cell 134:981–994

    PubMed  CAS  Google Scholar 

  51. Zhang Y, Hefferin ML, Chen L, Shim EY, Tseng HM, Kwon Y, Sung P, Lee SE, Tomkinson AE (2007) Role of Dnl4-Lif1 in nonhomologous end-joining repair complex assembly and suppression of homologous recombination. Nat Struct Mol Biol 14:639–646

    PubMed  CAS  Google Scholar 

  52. Barlow JH, Lisby M, Rothstein R (2008) Differential regulation of the cellular response to DNA double-strand breaks in G1. Mol Cell 30:73–85

    PubMed  CAS  Google Scholar 

  53. Clerici M, Mantiero D, Lucchini G, Longhese MP (2005) The Saccharomyces cerevisiae Sae2 protein promotes resection and bridging of double strand break ends. J Biol Chem 280:38631–38638

    PubMed  CAS  Google Scholar 

  54. Ubersax JA, Woodbury EL, Quang PN, Paraz M, Blethrow JD, Shah K, Shokat KM, Morgan DO (2003) Targets of the cyclin-dependent kinase Cdk1. Nature 425:859–864

    PubMed  CAS  Google Scholar 

  55. Zierhut C, Diffley JF (2008) Break dosage, cell cycle stage and DNA replication influence DNA double strand break response. EMBO J 27:1875–1885

    PubMed  CAS  Google Scholar 

  56. Clerici M, Mantiero D, Guerini I, Lucchini G, Longhese MP (2008) The Yku70–Yku80 complex contributes to regulate double-strand break processing and checkpoint activation during the cell cycle. EMBO Rep 9:810–818

    PubMed  CAS  Google Scholar 

  57. Gao Y, Ferguson DO, Xie W, Manis JP, Sekiguchi J, Frank KM, Chaudhuri J, Horner J, DePinho RA, Alt FW (2000) Interplay of p53 and DNA-repair protein XRCC4 in tumorigenesis, genomic stability and development. Nature 404:897–900

    PubMed  CAS  Google Scholar 

  58. Myung K, Ghosh G, Fattah FJ, Li G, Kim H, Dutia A, Pak E, Smith S, Hendrickson EA (2004) Regulation of telomere length and suppression of genomic instability in human somatic cells by Ku86. Mol Cell Biol 24:5050–5059

    PubMed  Google Scholar 

  59. Wasko BM, Holland CL, Resnick MA, Lewis LK (2009) Inhibition of DNA double-strand break repair by the Ku heterodimer in mrx mutants of Saccharomyces cerevisiae. DNA Repair (Amst) 8:162–169

    CAS  Google Scholar 

  60. Inbar O, Kupiec M (1999) Homology search and choice of homologous partner during mitotic recombination. Mol Cell Biol 19:4134–4142

    PubMed  CAS  Google Scholar 

  61. Budd ME, Campbell JL (2009) Interplay of Mre11 nuclease with Dna2 plus Sgs1 in Rad51-dependent recombinational repair. PLoS ONE 4:e4267

    PubMed  Google Scholar 

  62. Sugawara N, Haber JE (1992) Characterization of double-strand break-induced recombination: homology requirements and single-stranded DNA formation. Mol Cell Biol 12:563–575

    PubMed  CAS  Google Scholar 

  63. Heyer WD (2004) Recombination: Holliday junction resolution and crossover formation. Curr Biol 14:R56–R58

    PubMed  CAS  Google Scholar 

  64. Chen XB, Melchionna R, Denis CM, Gaillard PH, Blasina A, Van de Weyer I, Boddy MN, Russell P, Vialard J, McGowan CH (2001) Human Mus81-associated endonuclease cleaves Holliday junctions in vitro. Mol Cell 8:1117–1127

    PubMed  CAS  Google Scholar 

  65. Boddy MN, Gaillard PH, McDonald WH, Shanahan P, Yates JR 3rd, Russell P (2001) Mus81-Eme1 are essential components of a Holliday junction resolvase. Cell 107:537–548

    PubMed  CAS  Google Scholar 

  66. Gaskell LJ, Osman F, Gilbert RJ, Whitby MC (2007) Mus81 cleavage of Holliday junctions: a failsafe for processing meiotic recombination intermediates? EMBO J 26:1891–1901

    PubMed  CAS  Google Scholar 

  67. Kaliraman V, Mullen JR, Fricke WM, Bastin-Shanower SA, Brill SJ (2001) Functional overlap between Sgs1-Top3 and the Mms4-Mus81 endonuclease. Genes Dev 15:2730–2740

    PubMed  CAS  Google Scholar 

  68. Oh SD, Lao JP, Taylor AF, Smith GR, Hunter N (2008) RecQ helicase, Sgs1, and XPF family endonuclease, Mus81-Mms4, resolve aberrant joint molecules during meiotic recombination. Mol Cell 31:324–336

    PubMed  CAS  Google Scholar 

  69. Jessop L, Lichten M (2008) Mus81/Mms4 endonuclease and Sgs1 helicase collaborate to ensure proper recombination intermediate metabolism during meiosis. Mol Cell 31:313–323

    PubMed  CAS  Google Scholar 

  70. de los Santos T, Hunter N, Lee C, Larkin B, Loidl J, Hollingsworth NM (2003) The Mus81/Mms4 endonuclease acts independently of double-Holliday junction resolution to promote a distinct subset of crossovers during meiosis in budding yeast. Genetics 164:81–94

    Google Scholar 

  71. Haber JE, Heyer WD (2001) The fuss about Mus81. Cell 107:551–554

    PubMed  CAS  Google Scholar 

  72. Ip SC, Rass U, Blanco MG, Flynn HR, Skehel JM, West SC (2008) Identification of Holliday junction resolvases from humans and yeast. Nature 456:357–361

    PubMed  CAS  Google Scholar 

  73. Ira G, Malkova A, Liberi G, Foiani M, Haber JE (2003) Srs2 and Sgs1-Top3 suppress crossovers during double-strand break repair in yeast. Cell 115:401–411

    PubMed  CAS  Google Scholar 

  74. Wu L, Hickson ID (2003) The Bloom’s syndrome helicase suppresses crossing over during homologous recombination. Nature 426:870–874

    PubMed  CAS  Google Scholar 

  75. Chen CF, Brill SJ (2007) Binding and activation of DNA topoisomerase III by the Rmi1 subunit. J Biol Chem 282:28971–28979

    PubMed  CAS  Google Scholar 

  76. Ellis NA, Lennon DJ, Proytcheva M, Alhadeff B, Henderson EE, German J (1995) Somatic intragenic recombination within the mutated locus BLM can correct the high sister-chromatid exchange phenotype of Bloom syndrome cells. Am J Hum Genet 57:1019–1027

    PubMed  CAS  Google Scholar 

  77. Spell RM, Jinks-Robertson S (2004) Examination of the roles of Sgs1 and Srs2 helicases in the enforcement of recombination fidelity in Saccharomyces cerevisiae. Genetics 168:1855–1865

    PubMed  CAS  Google Scholar 

  78. Sugawara N, Goldfarb T, Studamire B, Alani E, Haber JE (2004) Heteroduplex rejection during single-strand annealing requires Sgs1 helicase and mismatch repair proteins Msh2 and Msh6 but not Pms1. Proc Natl Acad Sci USA 101:9315–9320

    PubMed  CAS  Google Scholar 

  79. Myung K, Datta A, Chen C, Kolodner RD (2001) SGS1, the Saccharomyces cerevisiae homologue of BLM and WRN, suppresses genome instability and homeologous recombination. Nat Genet 27:113–116

    PubMed  CAS  Google Scholar 

  80. Bohr VA (2008) Rising from the RecQ-age: the role of human RecQ helicases in genome maintenance. Trends Biochem Sci 33:609–620

    PubMed  CAS  Google Scholar 

  81. Bugreev DV, Mazina OM, Mazin AV (2006) Rad54 protein promotes branch migration of Holliday junctions. Nature 442:590–593

    PubMed  CAS  Google Scholar 

  82. Gari K, Decaillet C, Stasiak AZ, Stasiak A, Constantinou A (2008) The Fanconi anemia protein FANCM can promote branch migration of Holliday junctions and replication forks. Mol Cell 29:141–148

    PubMed  CAS  Google Scholar 

  83. Prakash R, Satory D, Dray E, Papusha A, Scheller J, Kramer W, Krejci L, Klein H, Haber JE, Sung P, Ira G (2009) Yeast Mph1 helicase dissociates Rad51-made D-loops: implications for crossover control in mitotic recombination. Genes Dev 23:67–79

    PubMed  CAS  Google Scholar 

  84. Sun W, Nandi S, Osman F, Ahn JS, Jakovleska J, Lorenz A, Whitby MC (2008) The FANCM ortholog Fml1 promotes recombination at stalled replication forks and limits crossing over during DNA double-strand break repair. Mol Cell 32:118–128

    PubMed  CAS  Google Scholar 

  85. Banerjee S, Smith S, Oum JH, Liaw HJ, Hwang JY, Sikdar N, Motegi A, Lee SE, Myung K (2008) Mph1p promotes gross chromosomal rearrangement through partial inhibition of homologous recombination. J Cell Biol 181:1083–1093

    PubMed  CAS  Google Scholar 

  86. Putnam CD, Pennaneach V, Kolodner RD (2005) Saccharomyces cerevisiae as a model system to define the chromosomal instability phenotype. Mol Cell Biol 25:7226–7238

    PubMed  CAS  Google Scholar 

  87. Richardson C, Jasin M (2000) Frequent chromosomal translocations induced by DNA double-strand breaks. Nature 405:697–700

    PubMed  CAS  Google Scholar 

  88. Lee K, Zhang Y, Lee SE (2008) Saccharomyces cerevisiae ATM orthologue suppresses break-induced chromosome translocations. Nature 454:543–546

    PubMed  CAS  Google Scholar 

  89. Weinstock DM, Brunet E, Jasin M (2007) Formation of NHEJ-derived reciprocal chromosomal translocations does not require Ku70. Nat Cell Biol 9:978–981

    PubMed  CAS  Google Scholar 

  90. Gu J, Lieber MR (2008) Mechanistic flexibility as a conserved theme across 3 billion years of nonhomologous DNA end-joining. Genes Dev 22:411–415

    PubMed  CAS  Google Scholar 

  91. Raghavan SC, Swanson PC, Wu X, Hsieh CL, Lieber MR (2004) A non-B-DNA structure at the Bcl-2 major breakpoint region is cleaved by the RAG complex. Nature 428:88–93

    PubMed  CAS  Google Scholar 

  92. Ramiro AR, Jankovic M, Callen E, Difilippantonio S, Chen HT, McBride KM, Eisenreich TR, Chen J, Dickins RA, Lowe SW, Nussenzweig A, Nussenzweig MC (2006) Role of genomic instability and p53 in AID-induced c-myc-Igh translocations. Nature 440:105–109

    PubMed  CAS  Google Scholar 

  93. Tsai AG, Lu H, Raghavan SC, Muschen M, Hsieh CL, Lieber MR (2008) Human chromosomal translocations at CpG sites and a theoretical basis for their lineage and stage specificity. Cell 135:1130–1142

    PubMed  CAS  Google Scholar 

  94. Lobachev K, Vitriol E, Stemple J, Resnick MA, Bloom K (2004) Chromosome fragmentation after induction of a double-strand break is an active process prevented by the RMX repair complex. Curr Biol 14:2107–2112

    PubMed  CAS  Google Scholar 

  95. Kaye JA, Melo JA, Cheung SK, Vaze MB, Haber JE, Toczyski DP (2004) DNA breaks promote genomic instability by impeding proper chromosome segregation. Curr Biol 14:2096–2106

    PubMed  CAS  Google Scholar 

  96. Jakob B, Splinter J, Durante M, Taucher-Scholz G (2009) Live cell microscopy analysis of radiation-induced DNA double-strand break motion. Proc Natl Acad Sci USA 106(9):3172–3177

    PubMed  CAS  Google Scholar 

  97. Nelms BE, Maser RS, MacKay JF, Lagally MG, Petrini JH (1998) In situ visualization of DNA double-strand break repair in human fibroblasts. Science 280:590–592

    PubMed  CAS  Google Scholar 

  98. Soutoglou E, Dorn JF, Sengupta K, Jasin M, Nussenzweig A, Ried T, Danuser G, Misteli T (2007) Positional stability of single double-strand breaks in mammalian cells. Nat Cell Biol 9:675–682

    PubMed  CAS  Google Scholar 

  99. Franco S, Alt FW, Manis JP (2006) Pathways that suppress programmed DNA breaks from progressing to chromosomal breaks and translocations. DNA Repair (Amst) 5:1030–1041

    CAS  Google Scholar 

  100. Bailey SM, Murnane JP (2006) Telomeres, chromosome instability and cancer. Nucleic Acids Res 34:2408–2417

    PubMed  CAS  Google Scholar 

  101. Dimitrova N, Chen YC, Spector DL, de Lange T (2008) 53BP1 promotes non-homologous end joining of telomeres by increasing chromatin mobility. Nature 456:524–528

    PubMed  CAS  Google Scholar 

  102. Difilippantonio S, Gapud E, Wong N, Huang CY, Mahowald G, Chen HT, Kruhlak MJ, Callen E, Livak F, Nussenzweig MC, Sleckman BP, Nussenzweig A (2008) 53BP1 facilitates long-range DNA end-joining during V(D)J recombination. Nature 456:529–533

    PubMed  CAS  Google Scholar 

  103. Mantiero D, Clerici M, Lucchini G, Longhese MP (2007) Dual role for Saccharomyces cerevisiae Tel1 in the checkpoint response to double-strand breaks. EMBO Rep 8:380–387

    PubMed  CAS  Google Scholar 

  104. Bredemeyer AL, Sharma GG, Huang CY, Helmink BA, Walker LM, Khor KC, Nuskey B, Sullivan KE, Pandita TK, Bassing CH, Sleckman BP (2006) ATM stabilizes DNA double-strand-break complexes during V(D)J recombination. Nature 442:466–470

    PubMed  CAS  Google Scholar 

  105. Bredemeyer AL, Huang CY, Walker LM, Bassing CH, Sleckman BP (2008) Aberrant V(D)J recombination in ataxia telangiectasia mutated-deficient lymphocytes is dependent on nonhomologous DNA end joining. J Immunol 181:2620–2625

    PubMed  CAS  Google Scholar 

  106. Callen E, Jankovic M, Difilippantonio S, Daniel JA, Chen HT, Celeste A, Pellegrini M, McBride K, Wangsa D, Bredemeyer AL, Sleckman BP, Ried T, Nussenzweig M, Nussenzweig A (2007) ATM prevents the persistence and propagation of chromosome breaks in lymphocytes. Cell 130:63–75

    PubMed  CAS  Google Scholar 

  107. Reina-San-Martin B, Chen HT, Nussenzweig A, Nussenzweig MC (2004) ATM is required for efficient recombination between immunoglobulin switch regions. J Exp Med 200:1103–1110

    PubMed  CAS  Google Scholar 

  108. Bassing CH, Alt FW (2004) H2AX may function as an anchor to hold broken chromosomal DNA ends in close proximity. Cell Cycle 3:149–153

    PubMed  CAS  Google Scholar 

  109. Franco S, Gostissa M, Zha S, Lombard DB, Murphy MM, Zarrin AA, Yan C, Tepsuporn S, Morales JC, Adams MM, Lou Z, Bassing CH, Manis JP, Chen J, Carpenter PB, Alt FW (2006) H2AX prevents DNA breaks from progressing to chromosome breaks and translocations. Mol Cell 21:201–214

    PubMed  CAS  Google Scholar 

  110. Ward IM, Difilippantonio S, Minn K, Mueller MD, Molina JR, Yu X, Frisk CS, Ried T, Nussenzweig A, Chen J (2005) 53BP1 cooperates with p53 and functions as a haploinsufficient tumor suppressor in mice. Mol Cell Biol 25:10079–10086

    PubMed  CAS  Google Scholar 

  111. Chan SW, Blackburn EH (2003) Telomerase and ATM/Tel1p protect telomeres from nonhomologous end joining. Mol Cell 11:1379–1387

    PubMed  CAS  Google Scholar 

  112. Karlseder J, Broccoli D, Dai Y, Hardy S, de Lange T (1999) p53- and ATM-dependent apoptosis induced by telomeres lacking TRF2. Science 283:1321–1325

    PubMed  CAS  Google Scholar 

  113. Bentley J, Diggle CP, Harnden P, Knowles MA, Kiltie AE (2004) DNA double strand break repair in human bladder cancer is error prone and involves microhomology-associated end-joining. Nucleic Acids Res 32:5249–5259

    PubMed  CAS  Google Scholar 

  114. Sallmyr A, Tomkinson AE, Rassool FV (2008) Up-regulation of WRN and DNA ligase IIIalpha in chronic myeloid leukemia: consequences for the repair of DNA double-strand breaks. Blood 112:1413–1423

    PubMed  CAS  Google Scholar 

  115. Heidinger-Pauli JM, Unal E, Guacci V, Koshland D (2008) The kleisin subunit of cohesin dictates damage-induced cohesion. Mol Cell 31:47–56

    PubMed  CAS  Google Scholar 

  116. Hwang JY, Smith S, Ceschia A, Torres-Rosell J, Aragon L, Myung K (2008) Smc5-Smc6 complex suppresses gross chromosomal rearrangements mediated by break-induced replications. DNA Repair (Amst) 7:1426–1436

    CAS  Google Scholar 

  117. Smith S, Gupta A, Kolodner RD, Myung K (2005) Suppression of gross chromosomal rearrangements by the multiple functions of the Mre11-Rad50-Xrs2 complex in Saccharomyces cerevisiae. DNA Repair (Amst) 4:606–617

    CAS  Google Scholar 

  118. Lengsfeld BM, Rattray AJ, Bhaskara V, Ghirlando R, Paull TT (2007) Sae2 is an endonuclease that processes hairpin DNA cooperatively with the Mre11/Rad50/Xrs2 complex. Mol Cell 28:638–651

    PubMed  CAS  Google Scholar 

  119. Barber LJ, Youds JL, Ward JD, McIlwraith MJ, O’Neil NJ, Petalcorin MI, Martin JS, Collis SJ, Cantor SB, Auclair M, Tissenbaum H, West SC, Rose AM, Boulton SJ (2008) RTEL1 maintains genomic stability by suppressing homologous recombination. Cell 135:261–271

    PubMed  CAS  Google Scholar 

  120. Chiolo I, Saponaro M, Baryshnikova A, Kim JH, Seo YS, Liberi G (2007) The human F-Box DNA helicase FBH1 faces Saccharomyces cerevisiae Srs2 and postreplication repair pathway roles. Mol Cell Biol 27:7439–7450

    PubMed  CAS  Google Scholar 

  121. Dronkert ML, Beverloo HB, Johnson RD, Hoeijmakers JH, Jasin M, Kanaar R (2000) Mouse RAD54 affects DNA double-strand break repair and sister chromatid exchange. Mol Cell Biol 20:3147–3156

    PubMed  CAS  Google Scholar 

  122. Osman F, Dixon J, Doe CL, Whitby MC (2003) Generating crossovers by resolution of nicked Holliday junctions: a role for Mus81-Eme1 in meiosis. Mol Cell 12:761–774

    PubMed  CAS  Google Scholar 

  123. Blais V, Gao H, Elwell CA, Boddy MN, Gaillard PH, Russell P, McGowan CH (2004) RNA interference inhibition of Mus81 reduces mitotic recombination in human cells. Mol Biol Cell 15:552–562

    PubMed  CAS  Google Scholar 

  124. Stewart GS, Wang B, Bignell CR, Taylor AM, Elledge SJ (2003) MDC1 is a mediator of the mammalian DNA damage checkpoint. Nature 421:961–966

    PubMed  CAS  Google Scholar 

  125. Lou Z, Minter-Dykhouse K, Franco S, Gostissa M, Rivera MA, Celeste A, Manis JP, van Deursen J, Nussenzweig A, Paull TT, Alt FW, Chen J (2006) MDC1 maintains genomic stability by participating in the amplification of ATM-dependent DNA damage signals. Mol Cell 21:187–200

    PubMed  CAS  Google Scholar 

  126. Chen C, Kolodner RD (1999) Gross chromosomal rearrangements in Saccharomyces cerevisiae replication and recombination defective mutants. Nat Genet 23:81–85

    PubMed  CAS  Google Scholar 

  127. Chen C, Umezu K, Kolodner RD (1998) Chromosomal rearrangements occur in S. cerevisiae rfa1 mutator mutants due to mutagenic lesions processed by double-strand-break repair. Mol Cell 2:9–22

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to members of the S. Lee and K. Myung’s laboratories for helpful discussions. We also thank to D. Walther and D. Daee for editorial help and J. Fekecs (NHGRI) for figure preparation. This work was supported by grants in the National Institutes of Health GM 083010 and the CTRC CDP pilot grants to S.E.L. and the intramural research program of the National Human Genome Research Institute, NIH to K.M. S.E.L. is a Leukemia and Lymphoma Society Scholar.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sang Eun Lee or Kyungjae Myung.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, S.E., Myung, K. Faithful after break-up: suppression of chromosomal translocations. Cell. Mol. Life Sci. 66, 3149–3160 (2009). https://doi.org/10.1007/s00018-009-0068-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-009-0068-5

Keywords

Navigation