Skip to main content
Log in

J. L. Lions’ problem on maximal regularity

  • Published:
Archiv der Mathematik Aims and scope Submit manuscript

Abstract

This is a survey on recent progress concerning maximal regularity of non-autonomous equations governed by time-dependent forms on a Hilbert space. It also contains two new results showing the limits of the theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Achache and E.M. Ouhabaz, Non-autonomous right and left multiplicative perturbations and maximal regularity, July 2016. Preprint on arXiv:1607.00254v1.

  2. W. Arendt, S. Bu, and M. Haase, Functional calculus, variational methods and Liapunov’s theorem, Arch. Math. (Basel) 77 (2001), 65–75.

    Article  MathSciNet  MATH  Google Scholar 

  3. W. Arendt and R. Chill, Global existence for quasilinear diffusion equations in isotropic nondivergence form, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 9 (2010), 523–539.

  4. W. Arendt and S. Monniaux, Maximal regularity for non-autonomous Robin boundary conditions, Math. Nachr. 289 (2016), 1325–1340.

    Article  MathSciNet  MATH  Google Scholar 

  5. W. Arendt, D. Dier, H. Laasri, and E.M. Ouhabaz, Maximal regularity for evolution equations governed by non-autonomous forms, Adv. Differential Equations 19 (2014), 1043–1066.

    MathSciNet  MATH  Google Scholar 

  6. B. Augner, B. Jacob, and H. Laasri, On the right multiplicative perturbation of non-autonomous L\(^{\rm p}\)-maximal regularity, J. Operator Theory 74 (2015), 391–415.

    Article  MathSciNet  MATH  Google Scholar 

  7. P. Auscher and M. Egert, On non-autonomous maximal regularity for elliptic operators in divergence form, Arch. Math. 107 (2016), 271–284.

    Article  MathSciNet  MATH  Google Scholar 

  8. P. Auscher and P. Tchamitchian, Square roots of elliptic second order divergence operators on strongly Lipschitz domains: \(L^{2}\) theory, J. Anal. Math. 90 (2003), 1–12.

    Article  MathSciNet  MATH  Google Scholar 

  9. P. Auscher, S. Hofmann, M. Lacey, A. McIntosh, and Ph. Tchamitchian, The solution of the Kato square root problem for second order elliptic operators on \(\mathbb{R}^{\rm n}\), Ann. of Math. (2) 156 (2002), 633–654.

  10. A. Axelsson, S. Keith, and A. Mcintosh, The Kato square root problem for mixed boundary value problems, J. London Math. Soc. (2) 74 (2006), 113–130.

  11. C. W. Bardos. A regularity theorem for parabolic equations, J. Funct. Anal. 7 (1971), 311–322.

    Article  MathSciNet  MATH  Google Scholar 

  12. D. Dier, Non-autonomous Cauchy problems governed by forms: maximal regularity and invariance, PhD thesis, Universität Ulm, 2014.

  13. D. Dier, Non-autonomous maximal regularity for forms of bounded variation, J. Math. Anal. Appl. 425 (2015), 33–54.

    Article  MathSciNet  MATH  Google Scholar 

  14. D. Dier and R. Zacher, Non-autonomous maximal regularity in Hilbert spaces. To appear in J. Evol. Equ. 2016. Preprint on arXiv:1601.05213v1.

  15. M. Egert, R. Haller-Dintelmann, and P. Tolksdorf, The Kato square root problem for mixed boundary conditions, J. Funct. Anal. 267 (2014), 1419–1461.

    Article  MathSciNet  MATH  Google Scholar 

  16. M. Egert, R. Haller-Dintelmann, and P. Tolksdorf, The Kato square root problem follows from an extrapolation property of the Laplacian, Publ. Mat. 60 (2016), 451–483.

    Article  MathSciNet  MATH  Google Scholar 

  17. S. Fackler, Non-autonomous maximal L\(^{\rm p}\)-regularity under fractional Sobolev regularity in time, Nov. 2016. Preprint on arXiv:1611.09064.

  18. S. Fackler, Non-autonomous maximal regularity for forms given by elliptic operators of bounded variation, Sept. 2016. Preprint on arXiv:1609.08823.

  19. S. Fackler, J.-L. Lions’ problem concerning maximal regularity of equations governed by non-autonomous forms. To appear in Ann. Inst. H. Poincaré Anal. Non Linéaire, 2016. Preprint on arXiv:1601.08012.

  20. B. H. Haak and E. M. Ouhabaz, Maximal regularity for non-autonomous evolution equations, Math. Ann. 363 (2015), 1117–1145.

    Article  MathSciNet  MATH  Google Scholar 

  21. M. Haase, The functional calculus for sectorial operators, Operator Theory: Advances and Applications, Birkhäuser Verlag, Basel, 2006, pp. xiv+392.

  22. M. Hieber and S. Monniaux, Pseudo-differential operators and maximal regularity results for non-autonomous parabolic equations, Proc. Amer. Math. Soc. 128 (2000), 1047–1053.

    Article  MathSciNet  MATH  Google Scholar 

  23. T. Hytönen and P. Portal, Vector-valued multiparameter singular integrals and pseudodifferential operators, Adv. Math. 217 (2008), 519–536.

    Article  MathSciNet  MATH  Google Scholar 

  24. T. Kato, Frational powers of dissipative operators. II J. Math. Soc. Japan 14 (1962), 242–248.

    Article  MathSciNet  MATH  Google Scholar 

  25. J-L. Lions, Équations différentielles opérationnelles et problèmes aux limites, Die Grundlehren der mathematischen Wissenschaften, Bd. 111, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1961, pp. ix+292.

  26. A. Lunardi, Interpolation theory, Second Edition, Appunti. Scuola Normale Superiore di Pisa (Nuova Serie). [Lecture Notes. Scuola Normale Superiore di Pisa (New Series)], Edizioni della Normale, Pisa, 2009, pp. xiv+191.

  27. A. Mcintosh, On the comparability of A\(^{1/2}\), Proc. Amer. Math. Soc. 32 (1972), 430–434.

    MathSciNet  MATH  Google Scholar 

  28. O. El-Mennaoui and H. Laasri, On evolution equations governed by non-autonomous forms, Arch. Math. 107 (2016), 43–57.

    Article  MathSciNet  MATH  Google Scholar 

  29. E.M. Ouhabaz, Maximal regularity for non-autonomous evolution equations governed by forms having less regularity, Arch. Math. 105 (2015), 79–91.

    Article  MathSciNet  MATH  Google Scholar 

  30. E.M. Ouhabaz and C. Spina, Maximal regularity for non-autonomous Schrödinger type equations, J. Differential Equations 248 (2010), 1668–1683.

    Article  MathSciNet  MATH  Google Scholar 

  31. P. Portal and Z. Štrkalj, Pseudodifferential operators on Bochner spaces and an application, Math. Z. 253 (2006), 805–819.

    Article  MathSciNet  MATH  Google Scholar 

  32. R. E. Showalter, Monotone Operators in Banach Space and Nonlinear Partial Differential Equations, Vol. 49, Mathematical Surveys and Monographs, American Mathematical Society, Providence, RI, 1997, pp. xiv+278.

  33. J. Simon, Sobolev, Besov and Nikolskii fractional spaces: imbeddings and comparisons for vector valued spaces on an interval, Ann. Mat. Pura Appl. (4) 157 (1990), 117–148.

  34. A. Yagi, Coïncidence entre des espaces d’interpolation et des domaines de puissances fractionnaires d’opérateurs, C. R. Acad. Sci. Paris Ser. I Math. 299 (1984), 173–176.

  35. M. Yamazaki, The L\(^{\mathrm p}\)-boundedness of pseudodifferential operators with estimates of parabolic type and product type, J. Math. Soc. Japan 38 (1986), 199–225.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephan Fackler.

Additional information

The first and third author were supported by the DFG Grant AR 134/4-1 “Regularität evolutionärer Probleme mittels Harmonischer Analyse und Operatortheorie”.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arendt, W., Dier, D. & Fackler, S. J. L. Lions’ problem on maximal regularity. Arch. Math. 109, 59–72 (2017). https://doi.org/10.1007/s00013-017-1031-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00013-017-1031-6

Mathematics Subject Classification

Keywords

Navigation