Skip to main content
Log in

Random approximation and the vertex index of convex bodies

  • Published:
Archiv der Mathematik Aims and scope Submit manuscript

Abstract

We prove that there exists an absolute constant \({\alpha > 1}\) with the following property: if K is a convex body in \({{\mathbb R}^n}\) whose center of mass is at the origin, then a random subset \({X\subset K}\) of cardinality \({{\rm card}(X)=\lceil\alpha n\rceil }\) satisfies with probability greater than \({1-e^{-c_1n}}\)

$$K\subseteq c_2n\, {\rm conv}(X),$$

where \({c_1, c_2 > 0}\) are absolute constants. As an application we show that the vertex index of any convex body K in \({{\mathbb R}^n}\) is bounded by \({c_3n^2}\), where \({c_3 > 0}\) is an absolute constant, thus extending an estimate of Bezdek and Litvak for the symmetric case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Artstein-Avidan, A. Giannopoulos, and V. D. Milman, Asymptotic Geometric Analysis, Part I, Mathematical Surveys and Monographs 202, Amer. Math. Soc., Providence, RI, 2015.

  2. Ball K. M., Pajor A.: Convex bodies with few faces. Proc. Amer. Math. Soc. 110, 225–231 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  3. A. Barvinok, Thrifty approximations of convex bodies by polytopes, Int. Math. Res. Not. IMRN (2014), 4341–4356.

  4. J. Batson, D. Spielman, and N. Srivastava, Twice-Ramanujan Sparsifiers, STOC’ 2009: Proceedings of the 41st annual ACM Symposium on Theory of Computing, ACM, New York, 2009, pp. 255–262.

  5. Bezdek K.: The illumination conjecture and its extensions. Period. Math. Hungar. 53, 59–69 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bezdek K., Litvak A.E.: On the vertex index of convex bodies. Adv. Math. 215, 626–641 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  7. J. Bourgain, On the distribution of polynomials on high dimensional convex sets, in Geom. Aspects of Funct. Analysis, Lecture Notes in Mathematics 1469, Springer, Berlin, 1991, 127–137.

  8. S. Brazitikos, Quantitative Helly-type theorem for the diameter of convex sets, Preprint (arXiv:1511.07779).

  9. S. Brazitikos, A. Giannopoulos, P. Valettas, and B-H. Vritsiou, Geometry of isotropic convex bodies, Mathematical Surveys and Monographs 196, American Mathematical Society, Providence, RI, 2014.

  10. Dafnis N., Giannopoulos A., Tsolomitis A.: Asymptotic shape of a random polytope in a convex body. J. Funct. Anal. 257, 2820–2839 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. Giannopoulos A., Milman V. D.: Concentration property on probability spaces. Adv. Math. 156, 77–106 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  12. Gluskin E. D., Litvak A. E.: Asymmetry of convex polytopes and vertex index of symmetric convex bodies. Discrete Comput. Geom. 40, 528–536 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  13. E. D. Gluskin and A. E. Litvak, A remark on vertex index of the convex bodies, in Geom. Aspects of Funct. Analysis, Lecture Notes in Math. 2050, Springer, Berlin, 2012, 255–265.

  14. Guédon O., Milman E.: Interpolating thin-shell and sharp large-deviation estimates for isotropic log-concave measures. Geom. Funct. Anal. 21, 1043–1068 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  15. Haberl C.: \({L_p}\) intersection bodies. Adv. Math. 217, 2599–2624 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  16. F. John, Studies and Essays Presented to R. Courant on his 60th Birthday, January 8, 1948, 187–204. Interscience Publishers, Inc., New York, N. Y., 1948.

  17. Kannan R., Lovász L., Simonovits M.: Isoperimetric problems for convex bodies and a localization lemma. Discrete Comput. Geom. 13, 541–559 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  18. Klartag B.: On convex perturbations with a bounded isotropic constant. Geom. Funct. Anal. 16, 1274–1290 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  19. Klartag B., Milman E.: Centroid bodies and the logarithmic Laplace transform—a unified approach, J. Funct. Anal. 262 (2012), 10–34.

    Article  MathSciNet  MATH  Google Scholar 

  20. Lutwak E., Yang D., Zhang G.: \({L^p}\) affine isoperimetric inequalities. J. Differential Geom. 56, 111–132 (2000)

    MathSciNet  MATH  Google Scholar 

  21. V. D. Milman and A. Pajor, Isotropic position and inertia ellipsoids and zonoids of the unit ball of a normed n-dimensional space, in Geom. Aspects of Funct. Analysis, Lecture Notes in Mathematics 1376, Springer, Berlin, 1989, 64–104.

  22. Paouris G.: Concentration of mass in convex bodies. Geom. Funct. Anal. 16, 1021–1049 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  23. Paouris G.: Small ball probability estimates for log-concave measures. Trans. Amer. Math. Soc. 364, 287–308 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  24. Paouris G., Werner E.: Relative entropy of cone measures and \({L_p}\)-centroid bodies. Proc. Lond. Math. Soc. 104, 253–286 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  25. R. Schneider, Convex Bodies: The Brunn-Minkowski Theory, Second expanded edition. Encyclopedia of Mathematics and Its Applications 151, Cambridge University Press, Cambridge, 2014.

  26. N. Srivastava, On contact points of convex bodies, in Geom. Aspects of Funct. Analysis, Lecture Notes in Mathematics 2050, Springer, Berlin, 2012, 393–412.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giorgos Chasapis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brazitikos, S., Chasapis, G. & Hioni, L. Random approximation and the vertex index of convex bodies. Arch. Math. 108, 209–221 (2017). https://doi.org/10.1007/s00013-016-0975-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00013-016-0975-2

Mathematics Subject Classification

Keywords

Navigation