Skip to main content
Log in

Covering maximal ideals with minimal primes

  • Published:
Algebra universalis Aims and scope Submit manuscript

Abstract

A ring is a UMP-ring if every maximal ideal in the ring is the union of the minimal prime ideals it contains. Banerjee, Ghosh and Henriksen have characterized Tychonoff spaces X for which C(X) is a UMP-ring. One of the characterizations is that every singleton of β X is what is called a nearly round subset. In this article, we define nearly round quotient maps, and use them to characterize completely regular frames L for which \({\mathcal{R} L}\) is a UMP-ring. All such frames are almost P-frames, and an Oz-frame is of this kind precisely when it is an almost P-frame. If L is perfectly normal (and hence if L is metrizable), then \({\mathcal{R} L}\) is a UMP-ring if and only if L is Boolean. If A is a UMP-ring which is a \({\mathbb{Q}}\) -algebra, then every ideal of A, when viewed as a ring in its own right, is a UMP-ring.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Artico G., Marconi U.: On the compactness of the minimal spectrum. Rend. Sem. Mat. Univ. Padova 56, 79–84 (1976)

    MathSciNet  MATH  Google Scholar 

  2. Ball R.N., Walters-Wayland J.: C-and C*-quotients in pointfree topology. Dissertationes Math. (Rozprawy Mat.) 412, 62 (2002)

    MathSciNet  MATH  Google Scholar 

  3. Banaschewski, B.: The real numbers in pointfree topology. Textos de Matemática Série B, No. 12. Departamento de Matemática da Universidade de Coimbra (1997)

  4. Banaschewski B.: On the function rings of pointfree topology. Kyungpook Math. J. 48, 195–206 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Banaschewski B., Dube T., Gilmour C., Walters-Wayland J.: OZ in pointfree topology. Quaest. Math. 32, 215–227 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. Banaschewski B., Gilmour C.: Realcompactness and the cozero part of a frame. Appl. Categ. Structures 9, 395–417 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  7. Banaschewski B., Hong S.S.: Completeness properties of function rings in pointfree topology. Comment. Math. Univ. Carolin. 44, 245–259 (2003)

    MathSciNet  MATH  Google Scholar 

  8. Banerjee B., Ghosh S.K., Henriksen M.: Unions of minimal prime ideals of rings of continuous functions on compact spaces. Algebra Universalis 62, 239–246 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Blair R.L.: Spaces in which special sets are z-embedded. Canad. J.Math. 28, 673–690 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  10. Contessa M.: Ultraproducts of pm-rings and mp-rings. J. Pure Appl. Algebra 32, 11–20 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  11. Cornish W.H.: Normal lattices. J. Aust. Math. Soc. 14, 200–215 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  12. De Marco G., Orsatti A.: Commutative rings in which every prime ideal is contained in a unique maximal ideal. Proc. Amer. Math. Soc. 30, 459–466 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  13. Dube T.: Remote points and the like in pointfree topology. Acta Math. Hungar. 123, 203–222 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. Dube T.: Some ring-theoretic properties of almost P-frames. Algebra Universalis 60, 145–162 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. Dube, T.: Concerning P-frames, essential P-frames, and strongly zero-dimensional frames Algebra Universalis 61, 115–138 (2009)

  16. Dube T.: Some algebraic characterizations of F-frames. Algebra Universalis 62, 273–288 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  17. Gillman L., Jerison M.: Rings of Continuous Functions. Van Nostrand, Princeton (1960)

    Book  MATH  Google Scholar 

  18. Ghosh S.K.: Intersections of minimal prime ideals in the rings of continuous functions. Comment. Math. Univ. Carolin. 47, 623–632 (2006)

    MathSciNet  MATH  Google Scholar 

  19. Gutiérrez García J., Kubiak T., Picado J.: Pointfree forms of Dowker’s and Michael’s insertion theorems. J. Pure Appl. Algebra 213, 98–108 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. Henriksen M., Jerison M.: The space of minimal prime ideals of a commutative ring. Trans. Amer. Math. Soc. 115, 110–130 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  21. Madden J., Vermeer J.: Lindelöf locales and realcompactness. Math. Proc. Cambridge Philos. Soc. 99, 473–480 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  22. Matlis E.: The minimal prime spectrum of a reduced ring. Illinois J. Math. 27, 353–391 (1983)

    MathSciNet  MATH  Google Scholar 

  23. Picado J., Pultr A.: Frames and Locales: topology without points Frontiers in Mathematics. Springer, Basel (2012)

    Book  MATH  Google Scholar 

  24. Rudd D.: On isomorphisms between ideals in rings of continuous functions. Trans. Amer. Math. Soc. 159, 335–353 (1971)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Themba Dube.

Additional information

Presented by T. Kowalski.

This paper is dedicated to Professor Brian Davey, on his 65th birthday.

The research of was supported by the National Research Foundation of South Africa under grant no. 93514.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dube, T., Ighedo, O. Covering maximal ideals with minimal primes. Algebra Univers. 74, 411–424 (2015). https://doi.org/10.1007/s00012-015-0346-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00012-015-0346-z

2010 Mathematics Subject Classification

Keywords and phrases

Navigation