Skip to main content
Log in

A juggler’s dozen of easy problems

( Well, easily formulated . . .)

  • Published:
Algebra universalis Aims and scope Submit manuscript

Abstract

Is every dualizable finite algebra of finite signature finitely based? What is the likelihood that a random finite modular lattice directly decomposes into an even number of directly indecomposable lattices? Is the algebra \({\langle \mathbb{N},+, \cdot, {n\atopwithdelims ()k},!,0, 1 \rangle }\) finitely based? Is it decidable, given a finite lattice \({\mathbf{L}}\) and a finite algebra \({\mathbf{A}}\), whether \({\mathbf{L}}\) can be embedded into the congruence lattice of an algebra belonging to the variety generated by \({\mathbf{A}}\)? What is the Nullstellensatz for free lattices? Which finite automatic algebras are dualizable?

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Al Dhamri, N.: Dualities for quasi-varieties of bands. Semigroup Forum 88, 417–432 (2014). http://dx.doi.org/10.1007/s00233-013-9541-4

  2. Baker K.A.: Finite equational bases for finite algebras in a congruence-distributive equational class. Advances in Math. 24, 207–243 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  3. Baker K.A., McNulty G.F., Werner H.: Shift-automorphism methods for inherently nonfinitely based varieties of algebras. Czechoslovak Math. J. 39(114), 53–69 (1989)

    MathSciNet  Google Scholar 

  4. Baker K.A., Pixley A.F.: Polynomial interpolation and the Chinese remainder theorem for algebraic systems. Math. Z. 143, 165–174 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  5. Baker, K.A., Wang, J.: Definable principal subcongruences. Algebra Universalis 47, 145–151 (2002). http://dx.doi.org/10.1007/s00012-002-8180-5

  6. Banaschewski, B.: Projective covers in categories of topological spaces and topological algebras. In: General Topology and its Relations to Modern Analysis and Algebra, III (Proc. Conf., Kanpur, 1968), pp. 63–91. Academia, Prague (1971)

  7. Barto, L., Kozik, M.: Absorbing subalgebras, cyclic terms, and the constraint satisfaction problem. Log. Methods Comput. Sci. 8(1), 1:07, 27 (2012). http://dx.doi.org/10.2168/LMCS-8(1:7)2012

  8. Bentz, W., Davey, B.A., Pitkethly, J.G., Willard, R.: Dualizability of automatic algebras. J. Pure Appl. Algebra 218, 1324–1345 (2014) http://dx.doi.org/10.1016/j.jpaa.2013.11.020

  9. Birkhoff, G.: Universal algebra. In: Proc. First Canadian Math. Congress, Montreal, 1945, pp. 310–326. University of Toronto Press, Toronto (1946)

  10. Birkhoff, G.: Lattice Theory. American Mathematical Society Colloquium Publications, vol. 25, revised edition. American Mathematical Society, New York (1948)

  11. Boozer IV, J.F.: On the finite axiomatizability of equational theories of automatic algebras. ProQuest LLC, Ann Arbor, MI. PhD thesis, University of South Carolina (2010) http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:3413199.

  12. Bryant, R.M.: The laws of finite pointed groups. Bull. London Math. Soc. 14, 119–123 (1982). http://dx.doi.org/10.1112/blms/14.2.119

  13. Burris, S.N.: Number Theoretic Density and Logical Limit Laws. Mathematical Surveys and Monographs, vol. 86. American Mathematical Society, Providence (2001)

  14. Cacioppo, R.: Non-finitely based pseudovarieties and inherently non-finitely based varieties. Semigroup Forum 47, 223–226 (1993). http://dx.doi.org/10.1007/BF02573759

  15. Clark, D.M., Davey, B.A.: Natural Dualities for the Working Algebraist. Cambridge Studies in Advanced Mathematics vol. 57. Cambridge University Press, Cambridge (1998)

  16. Clark, D.M., Davey, B.A., Pitkethly, J.G., Rifqui, D.L.: Flat unars: the primal, the semi-primal and the dualisable. Algebra Universalis 63, 303–329 (2010). http://dx.doi.org/10.1007/s00012-010-0080-5.

  17. Clark, D.M., Idziak, P.M., Sabourin, L.R., Szabó, C., Willard, R.: Natural dualities for quasivarieties generated by a finite commutative ring. Algebra Universalis 46, 285–320 (2001) (the Viktor Aleksandrovich Gorbunov memorial issue). http://dx.doi.org/10.1007/PL00000344.

  18. Davey, B.A.: Duality theory on ten dollars a day. In: Algebras and Orders (Montreal, PQ, 1991), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., vol. 389, pp. 71–111. Kluwer Acad. Publ., Dordrecht (1993)

  19. Davey, B.A., Heindorf, L., McKenzie, R.: Near unanimity: an obstacle to general duality theory. Algebra Universalis 33, 428–439 (1995). http://dx.doi.org/10.1007/BF01190710

  20. Davey, B.A., Idziak, P., Lampe, W.A., McNulty, G.F.: Dualizability and graph algebras. Discrete Math. 214, 145–172 (2000). http://dx.doi.org/10.1016/S0012-365X(99)00225-3

  21. Davey, B.A., Jackson, M., Pitkethly, J.G., Talukder, M.R.: Natural dualities for semilattice-based algebras. Algebra Universalis 57, 463–490 (2007). http://dx.doi.org/10.1007/s00012-007-2061-x

  22. Davey, B.A., Knox, B.J.: From rectangular bands to k-primal algebras. Semigroup Forum 64, 29–54 (2002). http://dx.doi.org/10.1007/s002330010023

  23. DeMeo, W.: Interval enforceable properties of finite groups. Communications in Algebra (to appear)

  24. DeMeo, W.: Expansions of finite algebras and their congruence lattices. Algebra Universalis 69, 257–278 (2013). http://dx.doi.org/10.1007/s00012-013-0226-3

  25. DeMeo, W.J.: Congruence Lattices of Finite Algebras. ProQuest LLC, Ann Arbor, MI. PhD thesis, University of Hawai’i at Manoa (2012). http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqm&rft_dat=xri:pqdiss:3520678.

  26. van den Dries, L.: A completeness theorem for trigonometric identities and various results on exponential functions. Proc. Amer. Math. Soc. 96, 345–352 (1986). http://dx.doi.org/10.2307/2046179

  27. Dziobiak, W.: On infinite subdirectly irreducible algebras in locally finite equational classes. Algebra Universalis 13, 393–394 (1981). http://dx.doi.org/10.1007/BF02483850

  28. Eilenberg S., Schützenberger M.P.: On pseudovarieties. Advances in Math. 19, 413–418 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  29. Freese, R.: On the two kinds of probability in algebra. Algebra Universalis 27, 70–79 (1990). http://dx.doi.org/10.1007/BF01190254

  30. Freese, R., Ježek, J., Nation, J.B.: Free lattices, Mathematical Surveys and Monographs, vol. 42. American Mathematical Society, Providence (1995)

  31. Freese, R., McKenzie, R.: Residually small varieties with modular congruence lattices. Trans. Amer. Math. Soc. 264, 419–430 (1981). http://dx.doi.org/10.2307/1998548

  32. Grätzer G., Schmidt E.T.: Characterizations of congruence lattices of abstract algebras. Acta Sci. Math. (Szeged) 24, 34–59 (1963)

    MathSciNet  MATH  Google Scholar 

  33. Gurevi c, R.: Equational theory of positive numbers with exponentiation is not finitely axiomatizable. Ann. Pure Appl. Logic 49, 1–30 (1990). http://dx.doi.org/10.1016/0168-0072(90)90049-8

  34. Henson, C.W., Rubel, L.A.: Some applications of Nevanlinna theory to mathematical logic: identities of exponential functions. Trans. Amer. Math. Soc. 282, 1–32 (1984). http://dx.doi.org/10.2307/1999575

  35. Henson, C.W., Rubel, L.A.: Correction to: “Some applications of Nevanlinna theory to mathematical logic: identities of exponential functions” [Trans. Amer. Math. Soc. 282, 1–32 (1984)]. Trans. Amer. Math. Soc. 294, 381 (1986). http://dx.doi.org/10.2307/2000139

  36. Hobby, D.: Nondualisable semigroups. Bull. Austral. Math. Soc. 65, 491–502 (2002). http://dx.doi.org/10.1017/S0004972700020542

  37. Hobby, D., McKenzie, R.: The structure of finite algebras, Contemporary Mathematics, vol. 76. American Mathematical Society, Providence (1988)

  38. Hofmann, K.H., Mislove, M., Stralka, A.: The Pontryagin duality of compact O-dimensional semilattices and its applications. Lecture Notes in Mathematics, vol. 396. Springer, Berlin (1974)

  39. Isaev, I.M.: Inherently non-finitely based varieties of algebras. Sibirsk. Mat. Zh. 30, 75–77 (1989). http://dx.doi.org/10.1007/BF00970911

  40. Jackson, M.: Dualisability of finite semigroups. Internat. J. Algebra Comput. 13, 481–497 (2003). http://dx.doi.org/10.1142/S0218196703001535

  41. Ježek J.: Intervals in the lattice of varieties. Algebra Universalis 6, 147–158 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  42. Ježek, J.: The lattice of equational theories. I. Modular elements. Czechoslovak Math. J. 31(106), 127–152 (1981) (with a loose Russian summary)

  43. Ježek, J.: The lattice of equational theories. II. The lattice of full sets of terms. Czechoslovak Math. J. 31(106), 573–603 (1981)

  44. Ježek, J.: The lattice of equational theories. III. Definability and automorphisms. Czechoslovak Math. J. 32(107), 129–164 (1982)

  45. Ježek, J.: The lattice of equational theories. IV. Equational theories of finite algebras. Czechoslovak Math. J. 36(111), 331–341 (1986)

  46. Jónsson, B.: The unique factorization problem for finite relational structures. Colloq. Math. 14, 1–32 (1966)

  47. Kearnes, K.A., Kiss, E.W.: The shape of congruence lattices. Mem. Amer. Math. Soc. 222(1046), viii+169 (2013). http://dx.doi.org/10.1090/S0065-9266-2012-00667-8

  48. Kearnes, K., Szendrei, Á., Willard, R.: A finite basis theorem for difference-term varieties with a finite residual bound. Trans. Amer. Math. Soc. (to appear)

  49. Kearnes, K.A., Willard, R.: Residually finite, congruence meet-semidistributive varieties of finite type have a finite residual bound. Proc. Amer. Math. Soc. 127, 2841–2850 (1999). http://dx.doi.org/10.1090/S0002-9939-99-05097-2

  50. Lampe, W.A.: A property of the lattice of equational theories. Algebra Universalis 23, 61–69 (1986). http://dx.doi.org/10.1007/BF01190912

  51. Lampe, W.A.: A perspective on algebraic representations of lattices. Algebra Universalis 31, 337–364 (1994). http://dx.doi.org/10.1007/BF01221791

  52. Lampe, W.A.: Congruences, equational theories and lattice representations. Period. Math. Hungar. 32, 65–75 (1996). http://dx.doi.org/10.1007/BF01879733

  53. Lampe, W.A.: Results and problems on congruence lattice representations. Algebra Universalis 55, 127–135 (2006). http://dx.doi.org/10.1007/s00012-006-1990-0 (Special issue dedicated to Walter Taylor)

  54. Lampe, W.A., McNulty, G.F., Willard, R.: Full duality among graph algebras and flat graph algebras. Algebra Universalis 45, 311–334 (2001) (Conference on Lattices and Universal Algebra, Szeged 1998)

  55. Lyndon R.C.: Identities in finite algebras. Proc. Amer. Math. Soc. 5, 8–9 (1954)

    Article  MathSciNet  MATH  Google Scholar 

  56. Mal′cev, A.I.: Some borderline problems of algebra and logic. In: Proc. Internat. Congr. Math. (Moscow, 1966), pp. 217–231. Izdat. “Mir”, Moscow (1968)

  57. Maróti, M., McKenzie, R.: Existence theorems for weakly symmetric operations. Algebra Universalis 59, 463–489 (2008). http://dx.doi.org/10.1007/s00012-008-2122-9

  58. Martin, C.: Equational theories of natural numbers and transfinite ordinals. PhD thesis, University of California, Berkeley (1973)

  59. McKenzie, R.: Para primal varieties: A study of finite axiomatizability and definable principal congruences in locally finite varieties. Algebra Universalis 8, 336–348 (1978)

  60. McKenzie, R.: Finite equational bases for congruence modular varieties. Algebra Universalis 24, 224–250 (1987). http://dx.doi.org/10.1007/BF01195263

  61. McKenzie, R.: The residual bounds of finite algebras. Internat. J. Algebra Comput. 6, 1–28 (1996). http://dx.doi.org/10.1142/S0218196796000027

  62. McKenzie, R.: The residual bound of a finite algebra is not computable. Internat. J. Algebra Comput. 6, 29–48 (1996). http://dx.doi.org/10.1142/S0218196796000039

  63. McKenzie, R.: Tarski’s finite basis problem is undecidable. Internat. J. Algebra Comput. 6, 49–104 (1996). http://dx.doi.org/10.1142/S0218196796000040

  64. McKenzie, R.N., McNulty, G.F., Taylor, W.F.: Algebras, Lattices, Varieties, vol. I. The Wadsworth & Brooks/Cole Mathematics Series. Wadsworth & Brooks/Cole Advanced Books & Software, Monterey, CA (1987)

  65. McNulty, G.F., Székely, Z., Willard, R.: Equational complexity of the finite algebra membership problem. Internat. J. Algebra Comput. 18, 1283–1319 (2008). http://dx.doi.org/10.1142/S0218196708004913

  66. Murskiĭ, V.L.: The number of k-element algebras with a binary operation which do not have a finite basis of identities. Problemy Kibernet. (35), 5–27, 208 (1979)

  67. Nickodemus, M.H.: Natural dualities for finite groups with abelian Sylow subgroups. ProQuest LLC, Ann Arbor, MI. PhD thesis, University of Colorado at Boulder (2007)

  68. Nurakunov, A.M.: Unreasonable lattices of quasivarieties. Internat. J. Algebra Comput. 22, 125006, 17pp. (2012). http://dx.doi.org/10.1142/S0218196711006728

  69. Owens, K.S.: On Inherently Nonfinitely Based Varieties. PhD thesis, University of South Carolina (2009)

  70. Owens, K.S.: Every shift automorhism variety has an infinite subdirectly irreducible member. J. Austral. Math. Soc. 88, 231–238 (2010). http://dx.doi.org/10.1017/S1446788709000317

  71. Pálfy, P.P., Pudlák, P.: Congruence lattices of finite algebras and intervals in subgroup lattices of finite groups. Algebra Universalis 11, 22–27 (1980). http://dx.doi.org/10.1007/BF02483080

  72. Park, R.E.: Equational classes on non-associative ordered algebras. PhD thesis, University of California, Los Angeles (1976)

  73. Perkins, P.: Basic questions for general algebras. Algebra Universalis 19, 16–23 (1984). http://dx.doi.org/10.1007/BF01191487

  74. Petkovšek, M., Wilf, H.S., Zeilberger, D.: AB. A K Peters, Wellesley, (1996) (with a foreword by Donald E. Knuth)

  75. Pitkethly, J., Davey, B.: Dualisability, Unary algebras and Beyond. Advances in Mathematics, vol. 9. Springer, New York (2005)

  76. Pitkethly, J.G.: Uncountably many dualisable algebras. Internat. J. Algebra Comput. 21, 825–839 (2011). http://dx.doi.org/10.1142/S0218196711006534

  77. Pontryagin, L.S.: Topological Groups. Translated from the second Russian edition by Arlen Brown. Gordon and Breach Science Publishers, New York (1966)

  78. Priestley, H.A.: Ordered topological spaces and the representation of distributive lattices. Proc. London Math. Soc. (3) 24, 507–530 (1972)

  79. Pudlák, P., Tůma, J.: Every finite lattice can be embedded in a finite partition lattice. Algebra Universalis 10, 74–95 (1980). http://dx.doi.org/10.1007/BF02482893

  80. Quackenbush, R.W.: Equational classes generated by finite algebras. Algebra Universalis 1, 265–266 (1971/72)

  81. Quackenbush, R., Szabó, C.: Nilpotent groups are not dualizable. J. Austral. Math. Soc. 72, 173–179 (2002). http://dx.doi.org/10.1017/S1446788700003827

  82. Quackenbush, R., Szabó, C.: Strong duality for metacyclic groups. J. Aust. Math. Soc. 73, 377–392 (2002). http://dx.doi.org/10.1017/S1446788700009034

  83. Sapir, M.V.: Inherently non-finitely based finite semigroups. Mat. Sb. (N.S.) 133(175)(2), 154–166, 270 (1987)

  84. Sapir, M.V.: Problems of Burnside type and the finite basis property in varieties of semigroups. Izv. Akad. Nauk SSSR Ser. Mat. 51(2), 319–340, 447 (1987)

  85. Sapir M.V.: Sur la propriété de base finie pour les pseudovariétés de semigroupes finis. C. R. Acad. Sci. Paris Sér. I Math. 306(20), 795–797 (1988)

    MathSciNet  MATH  Google Scholar 

  86. Siggers, M.H.: A strong Mal’cev condition for locally finite varieties omitting the unary type. Algebra Universalis 64, 15–20 (2010). http://dx.doi.org/10.1007/s00012-010-0082-3

  87. Stone, M.H.: The theory of representations for Boolean algebras. Trans. Amer. Math. Soc. 40, 37–111 (1936). http://dx.doi.org/10.1090/S0002-9947-1936-1501865-8

  88. Székely, Z.: Complexity of the Finite Algebra Membership Problem for Varieties. PhD thesis, University of South Carolina, Columbia (1998)

  89. Taylor W.: Varieties obeying homotopy laws. Canad. J. Math. 29, 498–527 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  90. Whitman P.M.: Lattices, equivalence relations, and subgroups. Bull. Amer. Math. Soc. 52, 507–522 (1946)

    Article  MathSciNet  MATH  Google Scholar 

  91. Willard, R.: A finite basis theorem for residually finite, congruence meet-semidistributive varieties. J. Symbolic Logic 65, 187–200 (2000). http://dx.doi.org/10.2307/2586531

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George F. McNulty.

Additional information

Presented by M. Jackson.

In celebration of the achievements of Brian Davey

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McNulty, G.F. A juggler’s dozen of easy problems. Algebra Univers. 74, 17–34 (2015). https://doi.org/10.1007/s00012-015-0333-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00012-015-0333-4

2010 Mathematics Subject Classification

Key words and phrases

Navigation