Skip to main content
Log in

Small orthomodular partial algebras

  • Published:
Algebra universalis Aims and scope Submit manuscript

Abstract

Orthomodular partial algebras (OMAs) can be seen as the algebraic representation of orthomodular posets. We use Greechie diagrams for the graphical representation of OMAs and investigate characterizations for the strong embeddability of a given OMA into a Boolean OMA. We present a complete list of the Greechie diagrams of OMAs up to 24 elements, and we show that there exists an infinite OMA that is generated by 4 elements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Berge, C.: Graphs and Hypergraphs. Graphs and Hypergraphs. North-Holland (1976)

  2. Burmeister, P.: A model theoretic oriented approach to partial algebras. Introduction to Theory and Application of Partial Algebras - Part I, Mathematical Research, vol. 32. Akademie (1986)

  3. Burmeister P., Ma̧czyński M.: Orthomodular (partial) algebras and their representations. Demonstratio Math. 27, 701–722 (1994)

    MATH  MathSciNet  Google Scholar 

  4. Burmeister, P., Ma̧czyński, M.: Quasi-rings and congruences in the theory of orthomodular algebras. Tech. Rep. 2014, Department of Mathematics of the Darmstadt University of Technology (1998)

  5. Dichtl M.: Astroids and pastings. Algebra Universalis 18, 380–385 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  6. Erné, M., Heitzig, J., Reinhold, J.: On the number of distributive lattices. Electron. J. Combin. 9, Research Paper 24, 2381–2406 (2002)

  7. Godowski R.: Varieties of orthomodular lattices with a strongly full set of states. Demonstr. Math. 14, 725–733 (1981)

    MATH  MathSciNet  Google Scholar 

  8. Godowski R.: States on orthomodular lattices. Demonstr. Math. 15, 817–822 (1982)

    MATH  MathSciNet  Google Scholar 

  9. Greechie R.J.: Orthomodular lattices admitting no states. J. Combin. Theory Ser. A 10, 119–132 (1971)

    Article  MATH  MathSciNet  Google Scholar 

  10. Greechie R.J.: Some results from the combinatorial approach to quantum logic. Synthese 29, 113–127 (1974)

    Article  MATH  Google Scholar 

  11. Gudder, S.: Stochastic methods in quantum mechanics. Developments in Toxicology and Environmental Science. North-Holland (1979)

  12. Harding J.: Remarks on concrete orthomodular lattices. Internat. J. Theoret. Phys. 43, 2149–2168 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  13. Heitzig J., Reinhold J.: Counting finite lattices. Algebra Universalis 48, 43–53 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  14. Holzer R.: On subdirectly irreducible omas. Studia Logica 78, 261–277 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  15. Holzer R.: Greechie diagrams of orthomodular partial algebras. Algebra Universalis 57, 419–453 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  16. Kalmbach, G.: Orthomodular lattices. L.M.S. monographs. Academic Press (1983)

  17. McKay B.D., Megill N.D., Pavičić M.: Algorithms for greechie diagrams. International Journal of Theoretical Physics 39, 2381–2406 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  18. Navara, M.: Measure Theory, chap. Kernel logics, pp. 27–30. Tatra Mountain Mathematical Publishers (1993)

  19. Ovchinnikov P.G., Sultanbekov F.F.: Finite concrete logics: Their structure and measures on them. Proceedings of the International Quantum Structures Association (Berlin). Internat. J. Theoret. Phys. 37, 147–153 (1998)

    MATH  MathSciNet  Google Scholar 

  20. Pták, P.: Concrete quantum logics. Quantum Structures '98. Internat. J. Theoret. Phys. 39, 827–837 (2000).

  21. Pták, P., Pulmannová, S.: Orthomodular structures as quantum logics. Translated from the 1989 Slovak original by the authors. Fundamental Theories of Physics, vol. 44, Kluwer (1991)

  22. Pulmannová S.: A remark on orthomodular partial algebras. Demonstr. Math. 27, 687–699 (1994)

    MATH  Google Scholar 

  23. Rogalewicz V.: Any orthomodular poset is a pasting of boolean algebras. Comment. Math. Univ. Carolin. 29, 557–558 (1988)

    MATH  MathSciNet  Google Scholar 

  24. Rogalewicz V.: On generating and concreteness in quantum logics. Math. Slovaca 41, 431–435 (1991)

    MATH  MathSciNet  Google Scholar 

  25. Shultz, F.W.: Axioms for quantum mechanics: a generalized probability theory. Ph.D. thesis, University of Wisconsin, Madison (1972)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard Holzer.

Additional information

Presented by S. Pulmannova.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Holzer, R., Burmeister, P. Small orthomodular partial algebras. Algebra Univers. 73, 157–178 (2015). https://doi.org/10.1007/s00012-015-0318-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00012-015-0318-3

2010 Mathematics Subject Classification

Key words and phrases

Navigation