Skip to main content

Advertisement

Log in

Activation of liver X receptor α protects amyloid β1–40 induced inflammatory and senescent responses in human retinal pigment epithelial cells

  • Original Research Paper
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Objective

To investigate whether activation of the liver X receptors (LXRs) inhibits amyloid β1–40 (Aβ1–40) induced inflammatory and senescent responses in human retinal pigment epithelial (RPE) cells.

Materials and methods

Confluent cultures of human primary RPE and ARPE-19 cells pretreated with 5 μΜ of TO901317 (TO90), a synthetic agonist of LXR, or vehicle were incubated with 1 μΜ of Aβ1–40 or Aβ40–1. The optimum concentrations of Aβ1–40 and TO90 were determined by cell viability assay. Pro-inflammatory cytokines IL-6, IL-8, MCP-1 were detected by real-time polymerase chain reaction (PCR) and enzyme-linked immunosorbent assay (ELISA). Expression and localization of an aging protein p16INK4a (p16) were analyzed by western blotting and immunofluorescence. Expressions of LXRs and one of their target genes ATP-binding cassette transporter A1 (ABCA1) were examined by real-time PCR and western blotting. Phosphorylated transcription inhibition factor-κB-α (p-IκB-α) was assessed by western blotting.

Results

A negative linear relationship between the Aβ1–40 concentration and the cell viability was evident, indicating Aβ1–40 decreased ARPE-19 cell viability in a dose-dependent manner. Aβ1–40 enhanced the expression of IL-6, IL-8, MCP-1 as well as p16 in both RPE cell lines at both mRNA and protein levels, whereas TO90 counteracted the detrimental effects. TO90 upregulated the expression of LXRα and its target gene ABCA1, but it did not affect the expression of LXRβ. Meanwhile, TO90 inhibited the phosphorylation of IκB-α mediated by Aβ1–40 stimulation.

Conclusion

Activation of the LXRα-ABCA1 axis may alleviate Aβ1–40 induced inflammatory and senescent responses in RPE cells. The beneficial effect appears associated with the inhibition of the NF-κB signaling pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ye H, Zhang Q, Liu X, Cai X, Yu W, Yu S, et al. Prevalence of age-related macular degeneration in an elderly urban chinese population in China: the Jiangning Eye Study. Invest Ophthalmol Vis Sci. 2014;55:6374–80.

    Article  PubMed  Google Scholar 

  2. Park SW, Kim JH, Mook-Jung I, Kim KW, Park WJ, Park KH. Intracellular amyloid beta alters the tight junction of retinal pigment epithelium in 5XFAD mice. Neurobiol Aging. 2014;35:2013–20.

    Article  CAS  PubMed  Google Scholar 

  3. Bruban J, Glotin AL, Dinet V, Chalour N, Sennlaub F, Jonet L, et al. Amyloid-β(1–42) alters structure and function of retinal pigmented epithelial cells. Aging Cell. 2009;8:162–77.

    Article  CAS  PubMed  Google Scholar 

  4. Johnson LV, Leitner WP, Rivest AJ, Staples MK, Radeke MJ, Anderson DH. The Alzheimer’s A beta-peptide is deposited at sites of complement activation in pathologic deposits associated with aging and age-related macular degeneration. Proc Natl Acad Sci USA. 2002;99:11830–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Guo L, Salt TE, Luong V, Wood N, Cheung W, Maass A, et al. Targeting amyloid-beta in glaucoma treatment. Proc Natl Acad Sci USA. 2007;104:13444–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kurji KH, Cui JZ, Lin T, Harriman D, Prasad SS, Kojic L, et al. Microarray analysis identifies changes in inflammatory gene expression in response to amyloid-beta stimulation of cultured human retinal pigment epithelial cells. Invest Ophthalmol Vis Sci. 2010;51:1151–63.

    Article  PubMed  Google Scholar 

  7. Wang J, Ohno-Matsui K, Yoshida T, Shimada N, Ichinose S, Sato T, et al. Amyloid-beta up-regulates complement factor B in retinal pigment epithelial cells through cytokines released from recruited macrophages/microglia: another mechanism of complement activation in age-related macular degeneration. J Cell Physiol. 2009;220:119–28.

    Article  CAS  PubMed  Google Scholar 

  8. Cao L, Wang H, Wang F, Xu D, Liu F, Liu C. Aβ-Induced senescent RPE in AMD. Invest Ophthalmol Vis Sci. 2013;54:3738–50.

    Article  PubMed  Google Scholar 

  9. Yoshida T, Ohno-Matsui K, Ichinose S, Sato T, Iwata N, Saido TC, et al. The potential role of amyloid beta in the pathogenesis of age-related macular degeneration. J Clin Invest. 2005;115:2793–800.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Liu RT, Gao J, Cao S, Sandhu N, Cui JZ, Chou CL, et al. Inflammatory mediators induced by amyloid-beta in the retina and RPE in vivo: implications for inflammasome activation in age-related macular degeneration. Invest Ophthalmol Vis Sci. 2013;54:2225–37.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Ohno-Matsui K. Parallel findings in age-related macular degeneration and Alzheimer’s disease. Prog Retin Eye Res. 2011;30:217–38.

    Article  PubMed  Google Scholar 

  12. Doerks T, Copley RR, Schultz J, Ponting CP, Bork P. Systematic identification of novel protein domain families associated with nuclear functions. Genome Res. 2002;12:47–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Eckert GP, Vardanian L, Rebeck GW, Burns MP. Regulation of central nervous system cholesterol homeostasis by the liver X receptor agonist TO-901317. Neurosci Lett. 2007;423:47–52.

    Article  CAS  PubMed  Google Scholar 

  14. Janowski BA, Willy PJ, Devi TR, Falck JR, Mangelsdorf DJ. An oxysterol signalling pathway mediated by the nuclear receptor LXRα. Nature. 1996;383:728–31.

    Article  CAS  PubMed  Google Scholar 

  15. Kidani Y, Bensinger SJ. Liver X receptor and peroxisome proliferator-activated receptor as integrators of lipid homeostasis and immunity. Immunol Rev. 2012;249:72–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zelcer N, Tontonoz P. Liver X receptors as integrators of metabolic and inflammatory signaling. J Clin Invest. 2006;116:607–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zheng W, Reem RE, Omarova S, Huang S, DiPatre PL, Charvet CD, et al. Spatial Distribution of the pathways of cholesterol homeostasis in human retina. PLoS One. 2012;7:e37926.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Dwyer MA, Kazmin D, Hu P, McDonnell DP, Malek G. Research resource: nuclear receptor atlas of human retinal pigment epithelial cells: potential relevance to age-related macular degeneration. Mol Endocrinol. 2011;25:360–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Koldamova RP, Lefterov IM, Staufenbiel M, Wolfe D, Huang S, Glorioso JC, et al. The liver X receptor ligand T0901317 decreases amyloid beta production in vitro and in a mouse model of Alzheimer’s disease. J Biol Chem. 2005;280:4079–88.

    Article  CAS  PubMed  Google Scholar 

  20. Hazra S, Rasheed A, Bhatwadekar A, Wang X, Shaw LC, Patel M, et al. Liver X receptor modulates diabetic retinopathy outcome in a mouse model of streptozotocin-induced diabetes. Diabetes. 2012;61:3270–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Yang H, Zheng S, Qiu Y, Yang Y, Wang C, Yang P, et al. Activation of liver X receptor alleviates ocular inflammation in experimental autoimmune uveitis. Invest Ophthalmol Vis Sci. 2014;55:2795–804.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zheng S, Yang H, Chen Z, Zheng C, Lei C, Lei B. Activation of liver X receptor Protects inner retinal damage induced by N-methyl-d-aspartate. Invest Ophthalmol Vis Sci. 2014;56:1168–80.

    Article  Google Scholar 

  23. Liu RT, Wang A, To E, Gao J, Cao S, Cui JZ, et al. Vinpocetine inhibits amyloid-beta induced activation of NF-kappaB, NLRP3 inflammasome and cytokine production in retinal pigment epithelial cells. Exp Eye Res. 2014;127:49–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Collins JL, Fivush AM, Watson MA, Galardi CM, Lewis MC, Moore LB, et al. Identification of a nonsteroidal liver X receptor agonist through parallel array synthesis of tertiary amines. J Med Chem. 2002;45:1963–6.

    Article  CAS  PubMed  Google Scholar 

  25. Kayed R, Head E, Thompson JL, McIntire TM, Milton SC, Cotman CW, et al. Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis. Science. 2003;300:486–9.

    Article  CAS  PubMed  Google Scholar 

  26. Demuro A, Mina E, Kayed R, Milton SC, Parker I, Glabe CG. Calcium dysregulation and membrane disruption as a ubiquitous neurotoxic mechanism of soluble amyloid oligomers. J Biol Chem. 2005;280:17294–300.

    Article  CAS  PubMed  Google Scholar 

  27. Qiu Y, Tao L, Lei C, Wang J, Yang P, Li Q, et al. Downregulating p22phox ameliorates inflammatory response in Angiotensin II-induced oxidative stress by regulating MAPK and NF-kappaB pathways in ARPE-19 cells. Sci Rep. 2015;5:14362.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Chen Y, Zhong M, Liang L, Gu F, Peng H. Interleukin-17 induces angiogenesis in human choroidal endothelial cells in vitro. Invest Ophthalmol Vis Sci. 2014;55:6968–75.

    Article  CAS  PubMed  Google Scholar 

  29. Zhu Y, Dai B, Li Y, Peng H. C5a and toll-like receptor 4 crosstalk in retinal pigment epithelial. Mol Vis. 2015;21:1122–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Tao L, Qiu Y, Fu X, Lin R, Lei C, Wang J, et al. Angiotensin-converting enzyme 2 activator diminazene aceturate prevents lipopolysaccharide-induced inflammation by inhibiting MAPK and NF-kappaB pathways in human retinal pigment epithelium. J Neuroinflamm. 2016;13:35.

    Article  Google Scholar 

  31. Nagai A, Nakagawa E, Hatori K, Choi HB, McLarnon JG, Lee MA, et al. Generation and characterization of immortalized human microglial cell lines: expression of cytokines and chemokines. Neurobiol Dis. 2001;8:1057–68.

    Article  CAS  PubMed  Google Scholar 

  32. Fiala M, Zhang L, Gan X, Sherry B, Taub D, Graves MC, et al. Amyloid-beta induces chemokine secretion and monocyte migration across a human blood–brain barrier model. Mol Med. 1998;4:480–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhu Y, Liang L, Qian D, Yu H, Yang P, Lei B, et al. Increase in peripheral blood mononuclear cell Toll-like receptor 2/3 expression and reactivity to their ligands in a cohort of patients with wet age-related macular degeneration. Mol Vis. 2013;19:1826–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Jonas JB, Tao Y, Neumaier M, Findeisen P. Cytokine concentration in aqueous humour of eyes with exudative age-related macular degeneration. Acta Ophthalmol. 2012;90:e381–e8.

    Article  PubMed  Google Scholar 

  35. Boquoi A, Arora S, Chen T, Litwin S, Koh J, Enders GH. Reversible cell cycle inhibition and premature aging features imposed by conditional expression of p16Ink4a. Aging Cell. 2015;14:139–47.

    Article  CAS  PubMed  Google Scholar 

  36. Carrero I, Gonzalo MR, Martin B, Sanz-Anquela JM, Arevalo-Serrano J, Gonzalo-Ruiz A. Oligomers of beta-amyloid protein (Abeta1-42) induce the activation of cyclooxygenase-2 in astrocytes via an interaction with interleukin-1beta, tumour necrosis factor-alpha, and a nuclear factor kappa-B mechanism in the rat brain. Exp Neurol. 2012;236:215–27.

    Article  CAS  PubMed  Google Scholar 

  37. Ferrera D, Mazzaro N, Canale C, Gasparini L. Resting microglia react to Abeta42 fibrils but do not detect oligomers or oligomer-induced neuronal damage. Neurobiol Aging. 2014;35:2444–57.

    Article  CAS  PubMed  Google Scholar 

  38. Bruban J, Maoui A, Chalour N, An N, Jonet L, Feumi C, et al. CCR2/CCL2-mediated inflammation protects photoreceptor cells from amyloid-beta-induced apoptosis. Neurobiol Dis. 2011;42:55–72.

    Article  CAS  PubMed  Google Scholar 

  39. Lee M, McGeer E, McGeer PL. Activated human microglia stimulate neuroblastoma cells to upregulate production of beta amyloid protein and tau: implications for Alzheimer’s disease pathogenesis. Neurobiol Aging. 2015;36:42–52.

    Article  CAS  PubMed  Google Scholar 

  40. Cherry JD, Olschowka JA, O’Banion MK. Arginase 1 + microglia reduce Abeta plaque deposition during IL-1beta-dependent neuroinflammation. J Neuroinflamm. 2015;12:203.

    Article  Google Scholar 

  41. He N, Jin WL, Lok KH, Wang Y, Yin M, Wang ZJ. Amyloid-beta(1–42) oligomer accelerates senescence in adult hippocampal neural stem/progenitor cells via formylpeptide receptor 2. Cell Death Dis. 2013;4:e924.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Hassan WM, Dostal V, Huemann BN, Yerg JE, Link CD. Identifying Abeta-specific pathogenic mechanisms using a nematode model of Alzheimer’s disease. Neurobiol Aging. 2015;36:857–66.

    Article  CAS  PubMed  Google Scholar 

  43. Jurk D, Wilson C, Passos JF, Oakley F, Correia-Melo C, Greaves L, et al. Chronic inflammation induces telomere dysfunction and accelerates ageing in mice. Nat Commun. 2014;2:4172.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Cui W, Sun Y, Wang Z, Xu C, Peng Y, Li R. Liver X receptor activation attenuates inflammatory response and protects cholinergic neurons in APP/PS1 transgenic mice. Neuroscience. 2012;210:200–10.

    Article  CAS  PubMed  Google Scholar 

  45. Phillips MC. Molecular mechanisms of cellular cholesterol efflux. J Biol Chem. 2014;289:24020–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Sene A, Apte RS. Eyeballing cholesterol efflux and macrophage function in disease pathogenesis. Trends Endocrinol Metab. 2014;25:107–14.

    Article  CAS  PubMed  Google Scholar 

  47. Ito A, Hong C, Rong X, Zhu X, Tarling EJ, Hedde PN, et al. LXRs link metabolism to inflammation through Abca1-dependent regulation of membrane composition and TLR signaling. eLIFE. 2015;4:e08009.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Zhao T, Gao J, Van J, To E, Wang A, Cao S, et al. Age-related increases in amyloid beta and membrane attack complex: evidence of inflammasome activation in the rodent eye. J Neuroinflamm. 2015;12:121.

    Article  Google Scholar 

  49. Huang X, Chen Y, Zhang H, Ma Q, Zhang YW, Xu H. Salubrinal attenuates beta-amyloid-induced neuronal death and microglial activation by inhibition of the NF-kappaB pathway. Neurobiol Aging 2012;33:1007e9-17.

    Article  Google Scholar 

  50. Shi S, Liang D, Chen Y, Xie Y, Wang Y, Wang L, et al. Gx-50 reduces beta-amyloid-induced TNF-alpha, IL-1beta, NO and PGE expression and inhibits NF-kappaB signaling in a mouse model of Alzheimer’s disease. Eur J Immunol. 2015;46:665–76.

    Article  Google Scholar 

  51. Behl C, Davis JB, Lesley R, Schubert D. Hydrogen peroxide mediates amyloid beta protein toxicity. Cell. 1994;77:817–27.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China Grants (81271033, 81470621), Chongqing Science and Technology Commission (2014pt-sy10002), National Key Clinical Specialties Construction Program of China and a key project of Chongqing Health Bureau (2012-1-026).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hui Peng or Bo Lei.

Additional information

Responsible Editor: Graham R. Wallace.

H. Peng and B. Lei contributed equally to the work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (TIF 44 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, B., Lei, C., Lin, R. et al. Activation of liver X receptor α protects amyloid β1–40 induced inflammatory and senescent responses in human retinal pigment epithelial cells. Inflamm. Res. 66, 523–534 (2017). https://doi.org/10.1007/s00011-017-1036-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-017-1036-4

Keywords

Navigation