Skip to main content

Advertisement

Log in

Prolonged inflammatory microenvironment is crucial for pro-neoplastic growth and genome instability: a detailed review

  • Review
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Introduction

Chronic inflammation can affect the normal cell homeostasis and metabolism by rendering the cells susceptible to genomic instability that may lead to uncontrolled cellular growth and proliferation ensuing tumorigenesis. The causal agents for inflammation may be pathogenic infections like microbial agents ranging from viruses to bacteria. These infections lead to DNA damage or disruption of normal cell metabolism and alter the genome integrity.

Findings

In this review, we have highlighted the role of recurrent infections in tumor microenvironment can lead to recruitment of pro-inflammatory cells, cytokines and growth factors to the site of inflammation. This makes the environment rich in cytokines, chemokines, DNA-damaging agents (ROS, RNS) and growth factors which activate DNA damage response pathway and help in sustained proliferation of the tumor cells. In any inflammatory response, the production of cytokines and related signaling molecules is self-regulating and limiting. But in case of neoplastic risk, deregulation of these factors may lead to abnormalities and related pathogenesis.

Conclusion

The scope of the present review is to explore the probable mechanistic link and factors responsible for chronic inflammation. The relation between chronic inflammation and DNA damage response was further elucidated to understand the mechanism by which it makes the cells susceptible to carcinogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Sarkar D, Saha P, Gamre S, Bhattacharjee S, Hariharan C, Ganguly S, et al. Anti-inflammatory effect of allylpyrocatechol in LPS-induced macrophages is mediated by suppression of iNOS and COX-2 via the NF-κB pathway. Int Immunopharmacol. 2008;8:1264–71.

    Article  CAS  PubMed  Google Scholar 

  2. Vendramini-Costa DB, Carvalho JE. Molecular link mechanisms between inflammation and cancer. Curr Pharm Des. 2012;18:3831–52.

    Article  CAS  PubMed  Google Scholar 

  3. Wu Y, Antony S, Meitzler JL, Doroshow JH. Molecular mechanisms underlying chronic inflammation-associated cancers. Cancer Lett. 2014;345:164–73.

    Article  CAS  PubMed  Google Scholar 

  4. Kundu JK, Surh Y-J. Inflammation: gearing the journey to cancer. Mutat Res. 2008;659:15–30.

    Article  CAS  PubMed  Google Scholar 

  5. Clevers H. At the crossroads of inflammation and cancer. Cell. 2004;118:671–4.

    Article  CAS  PubMed  Google Scholar 

  6. Rakoff-Nahoum S. Why cancer and inflammation? Yale J Biol Med. 2006;79:123–30.

    CAS  PubMed  Google Scholar 

  7. Roessner A, Kuester D, Malfertheiner P, Schneider-Stock R. Oxidative stress in ulcerative colitis-associated carcinogenesis. Pathol Res Pract. 2008;204:511–24.

    Article  CAS  PubMed  Google Scholar 

  8. Ghosal G, Chen J. DNA damage tolerance: a double-edged sword guarding the genome. Transl Cancer Res. 2013;2:107–29.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Rouse J, Jackson SP. Interfaces between the detection, signaling, and repair of DNA damage. Science. 2002;297:547–51.

    Article  CAS  PubMed  Google Scholar 

  10. Harper JW, Elledge SJ. The DNA damage response: ten years after. Mol Cell. 2007;28:739–45.

    Article  CAS  PubMed  Google Scholar 

  11. Jackson SP, Bartek J. The DNA-damage response in human biology and disease. Nature. 2009;461:1071–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Polo SE, Jackson SP. Dynamics of DNA damage response proteins at DNA breaks: a focus on protein modifications. Genes Dev. 2011;25:409–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. O’Driscoll M, Jeggo PA. The role of double-strand break repair—insights from human genetics. Nat Rev Genet. 2006;7:45–54.

    Article  PubMed  CAS  Google Scholar 

  14. Khalil H, Tummala H, Chakarov S, Zhelev N, Lane D. Targeting ATM pathway for therapeutic intervention in cancer. Biodiscovery Dundee Science Press; 2012;1:3.

  15. Kurz DJ, Decary S, Hong Y, Trivier E, Akhmedov A, Erusalimsky JD. Chronic oxidative stress compromises telomere integrity and accelerates the onset of senescence in human endothelial cells. J Cell Sci. 2004;117:2417–26.

    Article  CAS  PubMed  Google Scholar 

  16. Andreassen PR, Ho GPH, D’Andrea AD. DNA damage responses and their many interactions with the replication fork. Carcinogenesis. 2006;27:883–92.

    Article  CAS  PubMed  Google Scholar 

  17. Li W, Tian D, Guan X, Yun H, Wang H, Xiao Y, et al. Esophageal intraepithelial invasion of Helicobacter pylori correlates with atypical hyperplasia. Int J Cancer. 2014;134:2626–32.

    Article  CAS  PubMed  Google Scholar 

  18. Blanco D, Vicent S, Fraga MF, Fernandez-Garcia I, Freire J, Lujambio A, et al. Molecular analysis of a multistep lung cancer model induced by chronic inflammation reveals epigenetic regulation of p16 and activation of the DNA damage response pathway. Neoplasia. 2007;9:840–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gerić M, Gajski G, Garaj-Vrhovac V. γ-H2AX as a biomarker for DNA double-strand breaks in ecotoxicology. Ecotoxicol Environ Saf. 2014;105:13–21.

    Article  PubMed  CAS  Google Scholar 

  20. He H, Wang C, Shen Z, Fang Y, Wang X, Chen W, et al. Upregulated expression of C–X–C chemokine receptor 4 is an independent prognostic predictor for patients with gastric cancer. PLoS One. 2013;8:e71864.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Guo F, Li J, Du W, Zhang S, O’Connor M, Thomas G, et al. mTOR regulates DNA damage response through NF-κB-mediated FANCD2 pathway in hematopoietic cells. Leukemia. 2013;27:2040–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Sobolewski C, Cerella C, Dicato M, Ghibelli L, Diederich M. The role of cyclooxygenase-2 in cell proliferation and cell death in human malignancies. Int J Cell Biol. 2010;2010:215158.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Medzhitov R, Janeway C. Innate immunity. N Engl J Med. 2000;343:338–44.

    Article  CAS  PubMed  Google Scholar 

  24. Takahashi H, Ogata H, Nishigaki R, Broide DH, Karin M. Tobacco smoke promotes lung tumorigenesis by triggering IKKbeta- and JNK1-dependent inflammation. Cancer Cell. 2010;17:89–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Grivennikov SI, Greten FR, Karin M. Immunity, inflammation, and cancer. Cell. 2010;140:883–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Itzkowitz SH, Yio X. Inflammation and cancer IV. Colorectal cancer in inflammatory bowel disease: the role of inflammation. Am J Physiol Gastrointest Liver Physiol. 2004;287:G7–17.

    Article  CAS  PubMed  Google Scholar 

  27. Parkin DM, Bray F, Ferlay J, Pisani P. Global cancer statistics, 2002. CA Cancer J Clin. 2005;55:74–108.

    Article  PubMed  Google Scholar 

  28. Mantovani A, Allavena P, Sica A, Balkwill F. Cancer-related inflammation. Nature. 2008;454:436–44.

    Article  CAS  PubMed  Google Scholar 

  29. Meira LB, Bugni JM, Green SL, Lee C-W, Pang B, Borenshtein D, et al. DNA damage induced by chronic inflammation contributes to colon carcinogenesis in mice. J Clin Invest. 2008;118:2516–25.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Padhi S, Saha A, Kar M, Ghosh C, Adhya A, Baisakh M, et al. Clinico-pathological correlation of β-catenin and telomere dysfunction in head and neck squamous cell carcinoma patients. J Cancer. 2015;6:192–202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lu H, Ouyang W, Huang C. Inflammation, a key event in cancer development. Mol Cancer Res. 2006;4:221–33.

    Article  PubMed  CAS  Google Scholar 

  32. Lin W-W, Karin M. A cytokine-mediated link between innate immunity, inflammation, and cancer. J Clin Invest. 2007;117:1175–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Santibañez JF, Quintanilla M, Bernabeu C. TGF-β/TGF-β receptor system and its role in physiological and pathological conditions. Clin Sci (Lond). 2011;121:233–51.

    Article  CAS  Google Scholar 

  34. Smyth MJ, Cretney E, Kershaw MH, Hayakawa Y. Cytokines in cancer immunity and immunotherapy. Immunol Rev. 2004;202:275–93.

    Article  CAS  PubMed  Google Scholar 

  35. Szlosarek P, Charles KA, Balkwill FR. Tumour necrosis factor-alpha as a tumour promoter. Eur J Cancer. 2006;42:745–50.

    Article  CAS  PubMed  Google Scholar 

  36. Charles KA, Kulbe H, Soper R, Escorcio-Correia M, Lawrence T, Schultheis A, et al. The tumor-promoting actions of TNF-alpha involve TNFR1 and IL-17 in ovarian cancer in mice and humans. J Clin Invest. 2009;119:3011–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Tang Q, Li J, Zhu H, Li P, Zou Z, Xiao Y. Hmgb1-IL-23-IL-17-IL-6-Stat3 axis promotes tumor growth in murine models of melanoma. Mediat Inflamm. 2013;2013:713859.

    Google Scholar 

  38. Hodge DR, Hurt EM, Farrar WL. The role of IL-6 and STAT3 in inflammation and cancer. Eur J Cancer. 2005;41:2502–12.

    Article  CAS  PubMed  Google Scholar 

  39. Schottelius AJ, Mayo MW, Sartor RB, Baldwin AS. Interleukin-10 signaling blocks inhibitor of kappaB kinase activity and nuclear factor kappaB DNA binding. J Biol Chem. 1999;274:31868–74.

    Article  CAS  PubMed  Google Scholar 

  40. Coussens LM, Werb Z. Inflammation and cancer. Nature. 2002;420:860–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kujawski M, Kortylewski M, Lee H, Herrmann A, Kay H, Yu H. Stat3 mediates myeloid cell-dependent tumor angiogenesis in mice. J Clin Invest. 2008;118:3367–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Yang L, Huang J, Ren X, Gorska AE, Chytil A, Aakre M, et al. Abrogation of TGF beta signaling in mammary carcinomas recruits Gr-1+ CD11b+ myeloid cells that promote metastasis. Cancer Cell. 2008;13:23–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Federico A, Morgillo F, Tuccillo C, Ciardiello F, Loguercio C. Chronic inflammation and oxidative stress in human carcinogenesis. Int J Cancer. 2007;121:2381–6.

    Article  CAS  PubMed  Google Scholar 

  44. Weyemi U, Lagente-Chevallier O, Boufraqech M, Prenois F, Courtin F, Caillou B, et al. ROS-generating NADPH oxidase NOX4 is a critical mediator in oncogenic H-Ras-induced DNA damage and subsequent senescence. Oncogene. 2012;31:1117–29.

    Article  CAS  PubMed  Google Scholar 

  45. Roque AT, Gambeloni RZ, Felitti S, Ribeiro ML, Santos JC. Inflammation-induced oxidative stress in breast cancer patients. Med Oncol. 2015;32:263.

    Article  PubMed  CAS  Google Scholar 

  46. Gorgoulis VG, Halazonetis TD. Oncogene-induced senescence: the bright and dark side of the response. Curr Opin Cell Biol. 2010;22:816–27.

    Article  CAS  PubMed  Google Scholar 

  47. Moore RJ, Owens DM, Stamp G, Arnott C, Burke F, East N, et al. Mice deficient in tumor necrosis factor-alpha are resistant to skin carcinogenesis. Nat Med. 1999;5:828–31.

    Article  CAS  PubMed  Google Scholar 

  48. Woo CH, Eom YW, Yoo MH, You HJ, Han HJ, Song WK, et al. Tumor necrosis factor-alpha generates reactive oxygen species via a cytosolic phospholipase A2-linked cascade. J Biol Chem. 2000;275:32357–62.

    Article  CAS  PubMed  Google Scholar 

  49. Hussain SP, Hofseth LJ, Harris CC. Radical causes of cancer. Nat Rev Cancer. 2003;3:276–85.

    Article  CAS  PubMed  Google Scholar 

  50. Coward J, Kulbe H, Chakravarty P, Leader D, Vassileva V, Leinster DA, et al. Interleukin-6 as a therapeutic target in human ovarian cancer. Clin Cancer Res. 2011;17:6083–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Song L, Rawal B, Nemeth JA, Haura EB. JAK1 activates STAT3 activity in non-small-cell lung cancer cells and IL-6 neutralizing antibodies can suppress JAK1-STAT3 signaling. Mol Cancer Ther. 2011;10:481–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Dorff TB, Goldman B, Pinski JK, Mack PC, Lara PN, Van Veldhuizen PJ, et al. Clinical and correlative results of SWOG S0354: a phase II trial of CNTO328 (siltuximab), a monoclonal antibody against interleukin-6, in chemotherapy-pretreated patients with castration-resistant prostate cancer. Clin Cancer Res. 2010;16:3028–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Yu H, Pardoll D, Jove R. STATs in cancer inflammation and immunity: a leading role for STAT3. Nat Rev Cancer. 2009;9:798–809.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Jakowlew SB. Transforming growth factor-beta in cancer and metastasis. Cancer Metastasis Rev. 2006;25:435–57.

    Article  CAS  PubMed  Google Scholar 

  55. Bierie B, Moses HL. TGF-beta and cancer. Cytokine Growth Factor Rev. 2006;17:29–40.

    Article  CAS  PubMed  Google Scholar 

  56. Galizia G, Orditura M, Romano C, Lieto E, Castellano P, Pelosio L, et al. Prognostic significance of circulating IL-10 and IL-6 serum levels in colon cancer patients undergoing surgery. Clin Immunol. 2002;102:169–78.

    Article  CAS  PubMed  Google Scholar 

  57. Schottenfeld D, Beebe-Dimmer J. Chronic inflammation: a common and important factor in the pathogenesis of neoplasia. CA Cancer J Clin. 2006;56:69–83.

    Article  PubMed  Google Scholar 

  58. Roy S, Chakraborty A, Ghosh C, Banerjee B. Systematic analysis of integrated gene functional network of four chronic stress-related lifestyle disorders. Genome Integr. 2015;6:1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Bao Z, Xiong J, Li W, Chen Z, Shen H, Ying S. Genomic instability in chronic airway inflammatory diseases. Biomed J. 2015;38:117–24.

    Article  PubMed  Google Scholar 

  60. Trachootham D, Lu W, Ogasawara MA, Nilsa R-DV, P Huang. Redox regulation of cell survival. Antioxid Redox Signal. 2008;10:1343–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Poonepalli A, Banerjee B, Ramnarayanan K, Palanisamy N, Putti TC, Hande MP. Telomere-mediated genomic instability and the clinico-pathological parameters in breast cancer. Genes Chromosom Cancer. 2008;47:1098–109.

    Article  CAS  PubMed  Google Scholar 

  62. Bhattacharjee RN, Banerjee B, Akira S, Hande MP. Telomere-mediated chromosomal instability triggers TLR4 induced inflammation and death in mice. PLoS One. 2010;5:e11873.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Wiseman H, Kaur H, Halliwell B. DNA damage and cancer: measurement and mechanism. Cancer Lett. 1995;93:113–20.

    Article  CAS  PubMed  Google Scholar 

  64. Gates KS. An overview of chemical processes that damage cellular DNA: spontaneous hydrolysis, alkylation, and reactions with radicals. Chem Res Toxicol. 2009;22:1747–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Cooke MS, Evans MD, Dizdaroglu M, Lunec J. Oxidative DNA damage: mechanisms, mutation, and disease. FASEB J. 2003;17:1195–214.

    Article  CAS  PubMed  Google Scholar 

  66. Huang Y, Li L. DNA crosslinking damage and cancer—a tale of friend and foe. Transl Cancer Res. 2013;2:144–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Kryston TB, Georgiev AB, Pissis P, Georgakilas AG. Role of oxidative stress and DNA damage in human carcinogenesis. Mutat Res. 2011;711:193–201.

    Article  CAS  PubMed  Google Scholar 

  68. Tominaga H, Kodama S, Matsuda N, Suzuki K, Watanabe M. Involvement of reactive oxygen species (ROS) in the induction of genetic instability by radiation. J Radiat Res. 2004;45:181–8.

    Article  CAS  PubMed  Google Scholar 

  69. Shen Z. Genomic instability and cancer: an introduction. J Mol Cell Biol. 2011;3:1–3.

    Article  CAS  PubMed  Google Scholar 

  70. Aguilera A, García-Muse T. Causes of genome instability. Annu Rev Genet. 2013;47:1–32.

    Article  CAS  PubMed  Google Scholar 

  71. Hakem R. DNA-damage repair; the good, the bad, and the ugly. EMBO J. 2008;27:589–605.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Ogrunc M, Di Micco R, Liontos M, Bombardelli L, Mione M, Fumagalli M, et al. Oncogene-induced reactive oxygen species fuel hyperproliferation and DNA damage response activation. Cell Death Differ. 2014;21:998–1012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Roth S, Rottach A, Lotz-Havla AS, Laux V, Muschaweckh A, Gersting SW, et al. Rad50-CARD9 interactions link cytosolic DNA sensing to IL-1β production. Nat Immunol. 2014;15:538–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Kondo T, Kobayashi J, Saitoh T, Maruyama K, Ishii KJ, Barber GN, et al. DNA damage sensor MRE11 recognizes cytosolic double-stranded DNA and induces type I interferon by regulating STING trafficking. Proc Natl Acad Sci USA. 2013;110:2969–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Muralidharan S, Mandrekar P. Cellular stress response and innate immune signaling: integrating pathways in host defense and inflammation. J Leukoc Biol. 2013;94:1167–84.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Ferguson BJ, Mansur DS, Peters NE, Ren H, Smith GL. DNA-PK is a DNA sensor for IRF-3-dependent innate immunity. Elife. 2012;1:e00047.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Gasser S, Orsulic S, Brown EJ, Raulet DH. The DNA damage pathway regulates innate immune system ligands of the NKG2D receptor. Nature. 2005;436:1186–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Miyamoto S. Nuclear initiated NF-κB signaling: NEMO and ATM take center stage. Cell Res. 2011;21:116–30.

    Article  CAS  PubMed  Google Scholar 

  79. Lim JW, Kim H, Kim KH. Expression of Ku70 and Ku80 mediated by NF-kappa B and cyclooxygenase-2 is related to proliferation of human gastric cancer cells. J Biol Chem. 2002;277:46093–100.

    Article  CAS  PubMed  Google Scholar 

  80. Fang L, Choudhary S, Zhao Y, Edeh CB, Yang C, Boldogh I, et al. ATM regulates NF-κB-dependent immediate-early genes via RelA Ser 276 phosphorylation coupled to CDK9 promoter recruitment. Nucleic Acids Res. 2014;42:8416–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Xue W, Zender L, Miething C, Dickins RA, Hernando E, Krizhanovsky V, et al. Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas. Nature. 2007;445:656–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Takaoka A, Hayakawa S, Yanai H, Stoiber D, Negishi H, Kikuchi H, et al. Integration of interferon-α/β signalling to p53 responses in tumour suppression and antiviral defence. Nature. 2003;424:516–23.

    Article  CAS  PubMed  Google Scholar 

  83. Moiseeva O, Mallette FA, Mukhopadhyay UK, Moores A, Ferbeyre G. DNA damage signaling and p53-dependent senescence after prolonged beta-interferon stimulation. Mol Biol Cell. 2006;17:1583–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Niida H, Murata K, Shimada M, Ogawa K, Ohta K, Suzuki K, et al. Cooperative functions of Chk1 and Chk2 reduce tumour susceptibility in vivo. EMBO J. 2010;29:3558–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Xu M, Yu Q, Subrahmanyam R, Difilippantonio MJ, Ried T, Sen JM. Beta-catenin expression results in p53-independent DNA damage and oncogene-induced senescence in prelymphomagenic thymocytes in vivo. Mol Cell Biol. 2008;28:1713–23.

    Article  CAS  PubMed  Google Scholar 

  86. Cordon-Cardo C. At the crossroad of tumorigenesis: drivers and hitchhikers. Hum Pathol. 1999;30:1001–3.

    Article  CAS  PubMed  Google Scholar 

  87. Lawrence T. The nuclear factor NF-kappaB pathway in inflammation. Cold Spring Harb Perspect Biol. 2009;1:a001651.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Dvorak HF. Rous-Whipple Award Lecture. How tumors make bad blood vessels and stroma. Am J Pathol. 2003;162:1747–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Bubici C, Papa S, Pham CG, Zazzeroni F, Franzoso G. The NF-kB-mediated control of ROS and JNK signaling. Histol Histopathol. 2006;21:69–80.

    CAS  PubMed  Google Scholar 

  90. Herrero R, Castellsagué X, Pawlita M, Lissowska J, Kee F, Balaram P, et al. Human papillomavirus and oral cancer: the International Agency for Research on Cancer multicenter study. J Natl Cancer Inst. 2003;95:1772–83.

    Article  PubMed  Google Scholar 

  91. Yu H, Lee H, Herrmann A, Buettner R, Jove R. Revisiting STAT3 signalling in cancer: new and unexpected biological functions. Nat Rev Cancer. 2014;14:736–46.

    Article  CAS  PubMed  Google Scholar 

  92. Kim Y-H, Woo KJ, Lim JH, Kim S, Lee TJ, Jung EM, et al. 8-Hydroxyquinoline inhibits iNOS expression and nitric oxide production by down-regulating LPS-induced activity of NF-κB and C/EBPβ in Raw 264.7 cells. Biochem Biophys Res Commun. 2005;329:591–7.

    Article  CAS  PubMed  Google Scholar 

  93. Tatemichi M, Sawa T, Gilibert I, Tazawa H, Katoh T, Ohshima H. Increased risk of intestinal type of gastric adenocarcinoma in Japanese women associated with long forms of CCTTT pentanucleotide repeat in the inducible nitric oxide synthase promoter. Cancer Lett. 2005;217:197–202.

    Article  CAS  PubMed  Google Scholar 

  94. Li Q, Verma IM. NF-kappaB regulation in the immune system. Nat Rev Immunol. 2002;2:725–34.

    Article  CAS  PubMed  Google Scholar 

  95. Ricciotti E, FitzGerald GA. Prostaglandins and inflammation. Arterioscler Thromb Vasc Biol. 2011;31:986–1000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Polakis P. Wnt signaling and cancer. Genes Dev. 2000;14:1837–51.

    CAS  PubMed  Google Scholar 

  97. Angelova M, Zwezdaryk K, Ferris M, Shan B, Morris CA, Sullivan DE. Human cytomegalovirus infection dysregulates the canonical Wnt/β-catenin signaling pathway. PLoS Pathog (Public Library of Science). 2012;8:e1002959.

    Article  Google Scholar 

  98. Atherton JC. The pathogenesis of helicobacter pylori-induced gastro-duodenal diseases. Annu Rev Pathol. 2006;1:63–96.

    Article  CAS  PubMed  Google Scholar 

  99. Gold JS, Bayar S, Salem RR. Association of Streptococcus bovis bacteremia with colonic neoplasia and extracolonic malignancy. Arch Surg. 2004;139:760–5.

    Article  PubMed  Google Scholar 

  100. Marnett LJ. Oxyradicals and DNA damage. Carcinogenesis. 2000;21:361–70.

    Article  CAS  PubMed  Google Scholar 

  101. Yu MC, Yuan J-M. Environmental factors and risk for hepatocellular carcinoma. Gastroenterology. 2004;127:S72–8.

    Article  CAS  PubMed  Google Scholar 

  102. Masarone M, Persico M. Antiviral therapy: why does it fail in HCV-related chronic hepatitis? Expert Rev Anti Infect Ther. 2011;9:535–43.

    Article  PubMed  Google Scholar 

  103. Levrero M. Viral hepatitis and liver cancer: the case of hepatitis C. Oncogene. 2006;25:3834–47.

    Article  CAS  PubMed  Google Scholar 

  104. Laurent-Puig P, Zucman-Rossi J. Genetics of hepatocellular tumors. Oncogene. 2006;25:3778–86.

    Article  CAS  PubMed  Google Scholar 

  105. Bosch FX, de Sanjosé S. Human papillomavirus and cervical cancer–burden and assessment of causality. J Natl Cancer Inst Monogr 2003;31:3–13.

    Google Scholar 

  106. Tartour E, Gey A, Sastre-Garau X, Pannetier C, Mosseri V, Kourilsky P, et al. Analysis of interleukin 6 gene expression in cervical neoplasia using a quantitative polymerase chain reaction assay: evidence for enhanced interleukin 6 gene expression in invasive carcinoma. Cancer Res. 1994;54:6243–8.

    CAS  PubMed  Google Scholar 

  107. Castrilli G, Tatone D, Diodoro MG, Rosini S, Piantelli M, Musiani P. Interleukin 1alpha and interleukin 6 promote the in vitro growth of both normal and neoplastic human cervical epithelial cells. Br J Cancer. 1997;75:855–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Nasca MR, Innocenzi D, Micali G. Penile cancer among patients with genital lichen sclerosus. J Am Acad Dermatol. 1999;41:911–4.

    Article  CAS  PubMed  Google Scholar 

  109. Aituov B, Duisembekova A, Bulenova A, Alibek K. Pathogen-driven gastrointestinal cancers: time for a change in treatment paradigm? Infect Agent Cancer. 2012;7:18.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Shibata D, Weiss LM. Epstein-Barr virus-associated gastric adenocarcinoma. Am J Pathol. 1992;140:769–74.

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Del Valle L, White MK, Khalili K. Potential mechanisms of the human polyomavirus JC in neural oncogenesis. J Neuropathol Exp Neurol. 2008;67:729–40.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Abenavoli L, Masarone M, Peta V, Milic N, Kobyliak N, Rouabhia S, et al. Insulin resistance and liver steatosis in chronic hepatitis C infection genotype 3. World J Gastroenterol. 2014;20:15233–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Marnett LJ. Inflammation and cancer: chemical approaches to mechanisms, imaging, and treatment. J Org Chem. 2012;77:5224–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the rant from Department of Biotechnology (DBT), Govt. of India, and Grant Number: MED/2013/93 (BT/519/NE/TBP/2013).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Surajit Bhattacharjee or Birendranath Banerjee.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest. The manuscript complies with ethical standards.

Additional information

Responsible Editor: John Di Battista.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anuja, K., Roy, S., Ghosh, C. et al. Prolonged inflammatory microenvironment is crucial for pro-neoplastic growth and genome instability: a detailed review. Inflamm. Res. 66, 119–128 (2017). https://doi.org/10.1007/s00011-016-0985-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-016-0985-3

Keywords

Navigation