Skip to main content
Log in

Hyaluronidase decreases neutrophils infiltration to the inflammatory site

  • Original Research Paper
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Objective

To evaluate the in vivo anti-inflammatory potential of bovine hyaluronidase (HYAL) using two different models of acute inflammation.

Methods

Air pouches were produced in the dorsal subcutaneous of mice and injected with phosphate saline solution or HYAL. The antiinflammatory action of HYAL was evaluated in carrageenan (Cg)-inflamed air pouches. After 4 and 24 h the cellular influx, protein exudation, cytokines and lipid mediators were evaluated. The action of HYAL on the rolling and adhesion of leukocytes was investigated in the LPS-stimulated mesenteric microcirculation by intravital microscopic.

Results

Treatment with HYAL reduced the cellular influx and protein exudation in non-inflamed and inflamed air pouches. HYAL treatment of Cg-inflamed air pouch reduced the production of tumor necrosis factor-alpha (TNF-α), interleukin-8 (IL-8), leukotriene B4 (LTB4) and LTC4, whereas prostaglandins E2 (PGE2) and D2 (PGD2) concentrations were unchanged. Histological analyses showed that HYAL administration diminished cell infiltration in the air-pouch lining. In LPS-stimulated mesenteric microcirculation, HYAL usage decreased rolling and adhesion of leukocytes, but did not affect the blood vessels diameters.

Conclusion

The results demonstrate that HYAL inhibited cellular recruitment, edema formation and pro-inflammatory mediators production, resulting in decreased adherence of leukocytes to blood vessels and tissue infiltration. Our data suggest that HYAL may be considered an effective candidate to ameliorate acute inflammation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. El-Safory NS, Fazary AE, Lee CK. Hyaluronidases, a group of glycosidases: current and future perspectives. Carbohydr Polym. 2010;81:165–81.

    Article  CAS  Google Scholar 

  2. Girish KS, Kemparaju K. Inhibition of Naja naja venom hyaluronidase by plant-derived bioactive components and polysaccharides. Biochemistry (Mosc). 2005;70:948–52.

    Article  CAS  PubMed  Google Scholar 

  3. Girish KS, Kemparaju K. The magic glue hyaluronan and its eraser hyaluronidase: a biological overview. Life Sci. 2007;80(21):1921–43.

    Article  CAS  PubMed  Google Scholar 

  4. Fox JW. A brief review of the scientific history of several lesser-known snake venom proteins: l-amino acid oxidases, hyaluronidases and phosphodiesterases. Toxicon. 2013;62:75–82.

    Article  CAS  PubMed  Google Scholar 

  5. Dunn AL, Heavner JE, Racz G, Day M. Hyaluronidase: a review of approved formulations, indications and off-label use in chronic pain management. Expert Opin Biol Ther. 2010;10:127–31.

    Article  CAS  PubMed  Google Scholar 

  6. Kemparaju K, Girish KS. Snake venom hyaluronidase: a therapeutic target. Cell Biochem Funct. 2006;24(1):7–12.

    Article  CAS  PubMed  Google Scholar 

  7. Ferguson EL, Roberts JL, Moseley R, Griffiths PC, Thomas DW. Evaluation of the physical and biological properties of hyaluronan and hyaluronan fragments. Int J Pharm. 2011;420(1):84–92.

    Article  CAS  PubMed  Google Scholar 

  8. David-Raoudi M, Tranchepain F, Deschrevel B, Vincent JC, Bogdanowicz P, Boumediene K, Pujol JP. Differential effects of hyaluronan and its fragments on fibroblasts: relation to wound healing. Wound Repair Regen. 2008;16:274–87.

    Article  PubMed  Google Scholar 

  9. Bitencourt CS, Pereira PA, Ramos SG, Sampaio SV, Arantes EC, Aronoff DM, Faccioli LH. Hyaluronidase recruits mesenchymal-like cells to the lung and ameliorates fibrosis. Fibrogenesis Tissue Repair. 2011. doi:10.1186/1755-1536-4-3.

    PubMed  PubMed Central  Google Scholar 

  10. Bourguignon LY, Wong G, Earle CA, Xia W. Interaction of low molecular weight hyaluronan with CD44 and toll-like receptors promotes the actin filament-associated protein 110-actin binding and MyD88-NFκB signaling leading to proinflammatory cytokine/chemokine production and breast tumor invasion. Cytoskeleton (Hoboken). 2011;68:671–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sidgwick GP, Iqbal SA, Bayat A. Altered expression of hyaluronan synthase and hyaluronidase mRNA may affect hyaluronic acid distribution in keloid disease compared with normal skin. Exp Dermatol. 2013;22(5):377–9.

    Article  CAS  PubMed  Google Scholar 

  12. Fronza M, Caetano GF, Leite MN, Bitencourt CS, Paula-Silva FW, Andrade TA, Frade MA, Merfort I, Faccioli LH. Hyaluronidase modulates inflammatory response and accelerates the cutaneous wound healing. PLoS One. 2014. doi:10.1371/journal.pone.0112297.

    PubMed  PubMed Central  Google Scholar 

  13. Huang Z, Zhao C, Chen Y, Cowell JA, Wei G, Kultti A, Huang L, Thompson CB, Rosengren S, Frost GI, Shepard HM. Recombinant human hyaluronidase PH20 does not stimulate an acute inflammatory response and inhibits lipopolysaccharide-induced neutrophil recruitment in the air pouch model of inflammation. J Immunol. 2014;192(11):5285–95.

    Article  CAS  PubMed  Google Scholar 

  14. Sacca R, Cuff CA, Ruddle NH. Mediators of inflammation. Curr Opin Immunol. 1997;9(6):851–7.

    Article  CAS  PubMed  Google Scholar 

  15. Rock KL, Latz E, Ontiveros F, Kono H. The sterile inflammatory response. Annu Rev Immunol. 2010;28:321–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chen GY, Nuñez G. Sterile inflammation: sensing and reacting to damage. Nat Rev Immunol. 2010;10:826–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wright HL, Moots RJ, Bucknall RC, Edwards SW. Neutrophil function in inflammation and inflammatory diseases. Rheumatology (Oxford). 2010;49(9):1618–31.

    Article  CAS  Google Scholar 

  18. Kaplanski G, Marin V, Montero-Julian F, Mantovani A, Farnarier C. IL-6: a regulator of the transition from neutrophil to monocyte recruitment during inflammation. Trends Immunol. 2003;24(1):25–9.

    Article  CAS  PubMed  Google Scholar 

  19. Faccioli LH, Nourshargh S, Moqbel R, Williams FM, Sehmi R, Kay AB, Williams TJ. The accumulation of 111In-eosinophils induced by inflammatory mediators, in vivo. Immunology. 1991;73(2):222–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Medeiros AI, Silva CL, Malheiro A, Maffei CM, Faccioli LH. Leukotrienes are involved in leukocyte recruitment induced by live Histoplasma capsulatum or by the beta-glucan present in their cell wall. Br J Pharmacol. 1999;128(7):1529–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Flamand N, Mancuso P, Serezani CH, Brock TG. Leukotrienes: mediators that have been typecast as villains. Cell Mol Life Sci. 2007;64:2657–70.

    Article  CAS  PubMed  Google Scholar 

  22. Henderson WR Jr. The role of leukotrienes in inflammation. Ann Intern Med. 1994;121(9):684–97.

    Article  CAS  PubMed  Google Scholar 

  23. Ricciotti E, FitzGerald GA. Prostaglandins and inflammation. Arterioscler Thromb Vasc Biol. 2011;31(5):986–1000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kolaczkowska E, Kubes P. Neutrophil recruitment and function in health and inflammation. Nat Rev Immunol. 2013;13(3):159–75.

    Article  CAS  PubMed  Google Scholar 

  25. Aoki T, Narumiya S. Prostaglandins and chronic inflammation. Trends Pharmacol Sci. 2012;33:304–11.

    Article  CAS  PubMed  Google Scholar 

  26. McDonald B, McAvoy EF, Lam F, Gill V, de la Motte C, Savani RC, Kubes P. Interaction of CD44 and hyaluronan is the dominant mechanism for neutrophil sequestration in inflamed liver sinusoids. J Exp Med. 2008;205(4):915–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Deutschman CS, Tracey KJ. Sepsis: current dogma and new perspectives. Immunity. 2014;40:463–75.

    Article  CAS  PubMed  Google Scholar 

  28. Hack CE, Zeerleder S. The endothelium in sepsis: source of and a target for inflammation. Crit Care Med. 2001;29:S21–7.

    Article  CAS  PubMed  Google Scholar 

  29. Duarte DB, Vasko MR, Fehrenbacher JC. Models of inflammation: carrageenan air pouch. Curr Protoc Pharmacol. 2012. doi:10.1002/0471141755.

    PubMed Central  Google Scholar 

  30. Edwards JC, Sedgwick AD, Willoughby DA. The formation of a structure with the features of synovial lining by subcutaneous injection of air: an in vivo tissue culture system. J Pathol. 1981;134(2):147–56.

    Article  CAS  PubMed  Google Scholar 

  31. Rodrigues SF, Granger DN. Blood cells and endothelial barrier function. Tissue Barriers. 2015. doi:10.4161/21688370.2014.978720.

    PubMed  PubMed Central  Google Scholar 

  32. Barioni ED, Santin JR, Machado ID, Rodrigues SF, Ferraz-de-Paula V, Wagner TM, Cogliati B, Corrêa Dos Santos M, Machado Mda S, de Andrade SF, Niero R, Farsky SH. Achyrocline satureioides (Lam.) D.C. hydroalcoholic extract inhibits neutrophil functions related to innate host defense. Evid Based Complement Alternat Med. 2013. doi:10.1155/2013/787916.

    PubMed  PubMed Central  Google Scholar 

  33. Verri WA Jr, Souto FO, Vieira SM, Almeida SC, Fukada SY, Xu D, Alves-Filho JC, Cunha TM, Guerrero AT, Mattos-Guimaraes RB, Oliveira FR, Teixeira MM, Silva JS, McInnes IB, Ferreira SH, Louzada-Junior P, Liew FY, Cunha FQ. IL-33 induces neutrophil migration in rheumatoid arthritis and is a target of anti-TNF therapy. Ann Rheum Dis. 2010;69(9):1697–703.

    Article  CAS  PubMed  Google Scholar 

  34. Hwang SY, Kim JY, Kim KW, Park MK, Moon Y, Kim WU, Kim HY. IL-17 induces production of IL-6 and IL-8 in rheumatoid arthritis synovial fibroblasts via NF-kappaB- and PI3-kinase/Akt-dependent pathways. Arthritis Res Ther. 2004;6(2):R120–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Troughton PR, Platt R, Bird H, el-Manzalawi E, Bassiouni M, Wright V. Synovial fluid interleukin-8 and neutrophil function in rheumatoid arthritis and seronegative polyarthritis. Br J Rheumatol. 1996;35(12):1244–51.

    Article  CAS  PubMed  Google Scholar 

  36. Chen M, Lam BK, Kanaoka Y, Nigrovic PA, Audoly LP, Austen KF, Lee DM. Neutrophil-derived leukotriene B4 is required for inflammatory arthritis. J Exp Med. 2006;203:837–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Elmgreen J, Nielsen OH, Ahnfelt-Rønne I. Enhanced capacity for release of leucotriene B4 by neutrophils in rheumatoid arthritis. Ann Rheum Dis. 1987;46(7):501–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Mendes MT, Silveira PF. The interrelationship between leukotriene B4 and leukotriene-A4-hydrolase in collagen/adjuvant-induced arthritis in rats. Biomed Res Int. 2014. doi:10.1155/2014/730421.

    Google Scholar 

  39. Tudan C, Jackson JK, Blanis L, Pelech SL, Burt HM. Inhibition of TNF-alpha-induced neutrophil apoptosis by crystals of calcium pyrophosphate dihydrate is mediated by the extracellular signal-regulated kinase and phosphatidylinositol 3-kinase/Akt pathways up-stream of caspase 3. J Immunol. 2000;165(10):5798–806.

    Article  CAS  PubMed  Google Scholar 

  40. Adkison AM, Raptis SZ, Kelley DG, Pham CT. Dipeptidyl peptidase I activates neutrophil-derived serine proteases and regulates the development of acute experimental arthritis. J Clin Invest. 2002;109:363–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Alten R, Gromnica-Ihle E, Pohl C, Emmerich J, Steffgen J, Roscher R, Sigmund R, Schmolke B, Steinmann G. Inhibition of leukotriene B4-induced CD11B/CD18 (Mac-1) expression by BIIL 284, a new long acting LTB4 receptor antagonist, in patients with rheumatoid arthritis. Ann Rheum Dis. 2004;63:170–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Crooks SW, Bayley DL, Hill SL, Stockley RA. Bronchial inflammation in acute bacterial exacerbations of chronic bronchitis: the role of leukotriene B4. Eur Respir J. 2000;15(2):274–80.

    Article  CAS  PubMed  Google Scholar 

  43. Folco G, Rossoni G, Buccellati C, Berti F, Maclouf J, Sala A. Leukotrienes in cardiovascular diseases. Am J Respir Crit Care Med. 2000;161:S112–6.

    Article  CAS  PubMed  Google Scholar 

  44. O’Byrne PM. Leukotrienes in the pathogenesis of asthma. Chest. 1997;111(2 Suppl):27S–34S.

    Article  PubMed  Google Scholar 

  45. Steele VE, Holmes CA, Hawk ET, Kopelovich L, Lubet RA, Crowell JA, Sigman CC, Kelloff GJ. Lipoxygenase inhibitors as potential cancer chemopreventives. Cancer Epidemiol Biomarkers Prev. 1999;8(5):467–83.

    CAS  PubMed  Google Scholar 

  46. Henry CB, Duling BR. Permeation of the luminal capillary glycocalyx is determined by hyaluronan. Am J Physiol. 1999;277:H508–14.

    CAS  PubMed  Google Scholar 

  47. Cabrales P, Vázquez BY, Tsai AG, Intaglietta M. Microvascular and capillary perfusion following glycocalyx degradation. J Appl Physiol. 1985;2007(102):2251–9.

    Google Scholar 

  48. Van den Berg BM, Vink H, Spaan JA. The endothelial glycocalyx protects against myocardial edema. Circ Res. 2003;92(6):592–4.

    Article  PubMed  Google Scholar 

  49. Finsterbusch M, Voisin MB, Beyrau M, Williams TJ, Nourshargh S. Neutrophils recruited by chemoattractants in vivo induce microvascular plasma protein leakage through secretion of TNF. J Exp Med. 2014;211:1307–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Johnsson C, Hällgren R, Elvin A, Gerdin B, Tufveson G. Hyaluronidase ameliorates rejection-induced edema. Transpl Int. 1999;12(4):235–43.

    Article  CAS  PubMed  Google Scholar 

  51. Johnsson C, Hällgren R, Tufveson G. Hyaluronidase can be used to reduce interstitial edema in the presence of heparin. J Cardiovasc Pharmacol Ther. 2000;5(3):229–36.

    Article  CAS  PubMed  Google Scholar 

  52. Yipp BG, Andonegui G, Howlett CJ, Robbins SM, Hartung T, Ho M, Kubes P. Profound differences in leukocyte-endothelial cell responses to lipopolysaccharide versus lipoteichoic acid. J Immunol. 2002;168(9):4650–8.

    Article  CAS  PubMed  Google Scholar 

  53. Hakansson L, Venge P. The combined action of hyaluronic acid and fibronectin stimulates neutrophil migration. J Immunol. 1985;135(4):2735–9.

    CAS  PubMed  Google Scholar 

  54. Khan AI, Kerfoot SM, Heit B, Liu L, Andonegui G, Ruffell B, Johnson P, Kubes P. Role of CD44 and hyaluronan in neutrophil recruitment. J Immunol. 2004;173(12):7594–601.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the São Paulo Research Foundation (FAPESP, Grants# 2011/23992-3; 2009/07169-5), to the German Academic Exchange Service (DAAD) and the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for financial support. S.F. Rodrigues is a postdoctoral fellow from FAPESP (2011/02438-8).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lúcia Helena Faccioli.

Additional information

Responsible Editor: Mauro Teixeira.

M. Fronza and C. Muhr equally contributed to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fronza, M., Muhr, C., da Silveira, D.S.C. et al. Hyaluronidase decreases neutrophils infiltration to the inflammatory site. Inflamm. Res. 65, 533–542 (2016). https://doi.org/10.1007/s00011-016-0935-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-016-0935-0

Keywords

Navigation