Skip to main content
Log in

TLR4 inhibition impairs bacterial clearance in a therapeutic setting in murine abdominal sepsis

  • Original Research Paper
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Objective and design

To investigate the therapeutic effect of E5564 (a clinically used TLR4 inhibitor) in murine abdominal sepsis elicited by intraperitoneal infection with a highly virulent Escherichia coli in the context of concurrent antibiotic therapy.

Methods

Mice were infected with different doses (~2 × 104–2 × 106 CFU) of E. coli O18:K1 and treated after 8 h with ceftriaxone 20 mg/kg i.p. combined with either E5564 10 mg/kg i.v. or vehicle. For survival studies this treatment was repeated every 12 h. Bacterial loads and inflammatory parameters were determined after 20 h in peritoneal lavage fluid, blood, liver and lung tissue. Plasma creatinin, AST, ALT and LDH were determined to assess organ injury.

Results

E5564 impaired bacterial clearance under the antibiotic regime after infection with a low dose E. coli (1.7 × 104 CFU) while renal function was slightly preserved. No differences were observed in bacterial load and organ damage after infection with a tenfold higher (1.7 × 105 E. coli) bacterial dose. While treatment with E5564 slightly attenuated inflammatory markers provoked by the sublethal doses of 104–105 E. coli under the antibiotic regime, it did not affect lethality evoked by infection with 1.7 × 106 E. coli.

Conclusions

The impact of TLR4 inhibition during abdominal sepsis by virulent E. coli bacteria is only beneficial at low infection grade at cost of bactericidal activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. van der Poll T. Opal SM: host-pathogen interactions in sepsis. Lancet Infect Dis. 2008;8:32–43.

    Article  PubMed  Google Scholar 

  2. Ranieri VM, Thompson BT, Barie PS, Dhainaut JF, Douglas IS, Finfer S, et al. Drotrecogin alfa (activated) in adults with septic shock. N Engl J Med. 2012;366:2055–64.

    Article  PubMed  CAS  Google Scholar 

  3. Rittirsch D, Flierl MA, Ward PA. Harmful molecular mechanisms in sepsis. Nat Rev Immunol. 2008;8:776–87.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  4. Barochia AV, Cui X, Natanson C, Eichacker PQ. Risk of death and the efficacy of eritoran tetrasodium (E5564): design considerations for clinical trials of anti-inflammatory agents in sepsis. Crit Care Med. 2010;38:306–8.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Angus DC. The search for effective therapy for sepsis: back to the drawing board? JAMA. 2011;306:2614–5.

    Article  PubMed  CAS  Google Scholar 

  6. Renckens R, Roelofs JJ, Florquin S, van der Poll T. Urokinase-type plasminogen activator receptor plays a role in neutrophil migration during lipopolysaccharide-induced peritoneal inflammation but not during Escherichia coli-induced peritonitis. J Infect Dis. 2006;193:522–30.

    Article  PubMed  CAS  Google Scholar 

  7. Renckens R, Roelofs JJ, Florquin S, de Vos AF, Pater JM, Lijnen HR, et al. Endogenous tissue-type plasminogen activator is protective during Escherichia coli-induced abdominal sepsis in mice. J Immunol. 2006;177:1189–96.

    Article  PubMed  CAS  Google Scholar 

  8. Schouten M, Van’t Veer C, Levi M, Esmon CT, van der Poll T. Endogenous protein C inhibits activation of coagulation and transiently lowers bacterial outgrowth in murine Escherichia coli peritonitis. J Thromb Haemost. 2011;9:1072–5.

    Article  PubMed  CAS  Google Scholar 

  9. van’t Veer C, van den Pangaart PS, Kruijswijk D, Florquin S, de Vos Alex F, van der Poll T. Delineation of the role of Toll-like receptor signaling during peritonitis by a gradually growing pathogenic Escherichia coli. J Biol Chem. 2011;286:36603–18.

    Article  Google Scholar 

  10. Turnbull IR, Wlzorek JJ, Osborne D, Hotchkiss RS, Coopersmith CM, Buchman TG. Effects of age on mortality and antibiotic efficacy in cecal ligation and puncture. Shock. 2003;19:310–3.

    Article  PubMed  Google Scholar 

  11. Rijneveld AW, Florquin S, Hartung T, Speelman P, van der PT. Anti-tumor necrosis factor antibody impairs the therapeutic effect of ceftriaxone in murine pneumococcal pneumonia. J Infect Dis. 2003;188:282–5.

    Article  PubMed  CAS  Google Scholar 

  12. Wang E, Bergeron Y, Bergeron MG. Ceftriaxone pharmacokinetics in interleukin-10-treated murine pneumococcal pneumonia. J Antimicrob Chemother. 2005;55:721–6.

    Article  PubMed  CAS  Google Scholar 

  13. Gladwin M. Clinical Microbiology Made Ridiculously Simple. 4th ed. Miami: Med Master, Inc.; 2007.

    Google Scholar 

  14. Cross A, Asher L, Seguin M, Yuan L, Kelly N, Hammack C, et al. The importance of a lipopolysaccharide-initiated, cytokine-mediated host defense mechanism in mice against extraintestinally invasive Escherichia coli. J Clin Invest. 1995;96:676–86.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  15. Webster NR, Galley HF. Immunomodulation in the critically ill. Br J Anaesth. 2009;103:70–81.

    Article  PubMed  CAS  Google Scholar 

  16. Branger J, Knapp S, Weijer S, Leemans JC, Pater JM, Speelman P, et al. Role of Toll-like receptor 4 in gram-positive and gram-negative pneumonia in mice. Infect Immun. 2004;72:788–94.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  17. Wieland CW, van Lieshout MH, Hoogendijk AJ, Van Der Poll T. Host defence during Klebsiella pneumonia relies on haematopoietic-expressed Toll-like receptors 4 and 2. Eur Respir J. 2011;37:848–57.

    Article  PubMed  CAS  Google Scholar 

  18. Daubeuf B, Mathison J, Spiller S, Hugues S, Herren S, Ferlin W, et al. TLR4/MD-2 monoclonal antibody therapy affords protection in experimental models of septic shock. J Immunol. 2007;179:6107–14.

    Article  PubMed  CAS  Google Scholar 

  19. Roger T, Froidevaux C, Le RD, Reymond MK, Chanson AL, Mauri D, et al. Protection from lethal gram-negative bacterial sepsis by targeting Toll-like receptor 4. Proc Natl Acad Sci USA. 2009;106:2348–52.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  20. Spiller S, Elson G, Ferstl R, Dreher S, Mueller T, Freudenberg M, et al. TLR4-induced IFN-gamma production increases TLR2 sensitivity and drives Gram-negative sepsis in mice. J Exp Med. 2008;205:1747–54.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  21. Solomon SB, Cui X, Gerstenberger E, Danner RL, Fitz Y, Banks SM, et al. Effective dosing of lipid A analogue E5564 in rats depends on the timing of treatment and the route of Escherichia coli infection. J Infect Dis. 2006;193:634–44.

    Article  PubMed  CAS  Google Scholar 

  22. Visintin A, Halmen KA, Latz E, Monks BG, Golenbock DT. Pharmacological inhibition of endotoxin responses is achieved by targeting the TLR4 coreceptor, MD-2. J Immunol. 2005;175:6465–72.

    Article  PubMed  CAS  Google Scholar 

  23. Wasan KM, Sivak O, Cote RA, MacInnes AI, Boulanger KD, Lynn M, et al. Association of the endotoxin antagonist E5564 with high-density lipoproteins in vitro: dependence on low-density and triglyceride-rich lipoprotein concentrations. Antimicrob Agents Chemother. 2003;47:2796–803.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  24. Deng T, Feng X, Liu P, Yan K, Chen Y, Han D. Toll-like receptor 3 activation differentially regulates phagocytosis of bacteria and apoptotic neutrophils by mouse peritoneal macrophages. Immunol Cell Biol. 2012;91(1):52–9.

    Article  PubMed  Google Scholar 

  25. Jain V, Halle A, Halmen KA, Lien E, Charrel-Dennis M, Ram S, et al. Phagocytosis and intracellular killing of MD-2 opsonized gram-negative bacteria depend on TLR4 signaling. Blood. 2008;111:4637–45.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  26. Castoldi A, Braga TT, Correa-Costa M, Aguiar CF, Bassi EJ, Correa-Silva R, et al. TLR2, TLR4 and the MYD88 signaling pathway are crucial for neutrophil migration in acute kidney injury induced by sepsis. PLoS One. 2012;7:e37584.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  27. Watts BA III, George T, Sherwood ER, Good DW. A two-hit mechanism for sepsis-induced impairment of renal tubule function. Am J Physiol Renal Physiol. 2013;304(7):F863–74.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  28. Liu M, Gu M, Xu D, Lv Q, Zhang W, Wu Y. Protective effects of Toll-like receptor 4 inhibitor eritoran on renal ischemia-reperfusion injury. Transplant Proc. 2010;42:1539–44.

    Article  PubMed  CAS  Google Scholar 

  29. Chun KH, Seong SY. CD14 but not MD2 transmit signals from DAMP. Int Immunopharmacol. 2010;10:98–106.

    Article  PubMed  CAS  Google Scholar 

  30. Martin C, Ragni J, Lokiec F, Guillen JC, Auge A, Pecking M, et al. Pharmacokinetics and tissue penetration of a single dose of ceftriaxone (1,000 milligrams intravenously) for antibiotic prophylaxis in thoracic surgery. Antimicrob Agents Chemother. 1992;36:2804–7.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  31. Martin C, Cottin A, Francois-Godfroy N, Mallet MN, Martin A, Sastre B, et al. Concentrations of prophylactic ceftriaxone in abdominal tissues during pancreatic surgery. J Antimicrob Chemother. 1997;40:445–8.

    Article  PubMed  CAS  Google Scholar 

  32. Elson G, Dunn-Siegrist I, Daubeuf B, Pugin J. Contribution of Toll-like receptors to the innate immune response to Gram-negative and Gram-positive bacteria. Blood. 2007;109:1574–83.

    Article  PubMed  CAS  Google Scholar 

  33. Liang MD, Bagchi A, Warren HS, Tehan MM, Trigilio JA, Beasley-Topliffe LK, et al. Bacterial peptidoglycan-associated lipoprotein: a naturally occurring toll-like receptor 2 agonist that is shed into serum and has synergy with lipopolysaccharide. J Infect Dis. 2005;191:939–48.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge Eisai Inc., Woodcliff Lake, NJ for the supply of E5564 and Joost Daalhuisen and Marieke ten Brink for expert technical assistance. This work was supported by the AMC Graduate School of Medical Science (to M. H. P. v. L.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miriam H. P. van Lieshout.

Additional information

Responsible Editor: Artur Bauhofer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

van Lieshout, M.H.P., van der Poll, T. & van’t Veer, C. TLR4 inhibition impairs bacterial clearance in a therapeutic setting in murine abdominal sepsis. Inflamm. Res. 63, 927–933 (2014). https://doi.org/10.1007/s00011-014-0766-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-014-0766-9

Keywords

Navigation