Skip to main content

Advertisement

Log in

Higher pain scores, similar opioid doses and side effects associated with antipyretic analgesics in specialised tertiary pain care

  • Original Research Paper
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Purpose

To evaluate whether non-opioid antipyretic analgesics are associated with lower pain scores, opioid doses and side effects in pain patients in tertiary care.

Methods

In a cross-sectional observational study, data from 519 Caucasians (197 men, 322 women; mean age 55.6 ± 15 years) who had undertaken pain therapy for various causes for 77.5 ± 90.8 months, obtained in three separate study centres, was analysed for actual 24-h pain scores, daily opioid doses and the occurrence of side effects.

Results

Of the 519 patients, 352 received opioids and 260 antipyretic analgesics, from whom 154 received both classes and 304 only either class. The administration of non-opioid antipyretic analgesics was associated with higher average pain scores (4.6 ± 2.5 vs 3.9 ± 2.6; P = 0.01), tendentially higher average oral morphine equivalent doses (121.8 ± 162.2 vs 146.7 ± 242.4 mg/d; P = 0.25) and a similar incidence of side effects (P = 0.21). These results were correspondingly seen when analysing the three study centres separately as independent cohorts.

Conclusions

With the caution advised for cross-sectional data, the results dispute a clinical benefit of non-opioid antipyretic analgesics for most chronic pain patients in tertiary care and draw attention towards prospectively re-evaluating the utility of non-opioid antipyretic analgesics in tertiary pain care in a randomised placebo controlled trial.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. McQuay HJ, Moore RA, Eccleston C, Morley S, Williams AC. Systematic review of outpatient services for chronic pain control. Health Technol Assess. 1997;1(6):1–135.

    Google Scholar 

  2. Picard P, Bazin JE, Conio N, Ruiz F, Schoeffler P. Ketorolac potentiates morphine in postoperative patient-controlled analgesia. Pain. 1997;73(3):401–6.

    Article  CAS  PubMed  Google Scholar 

  3. Filitz J, Ihmsen H, Gunther W, Troster A, Schwilden H, Schuttler J, et al. Supra-additive effects of tramadol and acetaminophen in a human pain model. Pain. 2008;136(3):262–70.

    Article  CAS  PubMed  Google Scholar 

  4. Remy C, Marret E, Bonnet F. Effects of acetaminophen on morphine side-effects and consumption after major surgery: meta-analysis of randomized controlled trials. Br J Anaesth. 2005;94(4):505–13.

    Article  CAS  PubMed  Google Scholar 

  5. Mercadante S. The use of anti-inflammatory drugs in cancer pain. Cancer Treat Rev. 2001;27(1):51–61.

    Article  CAS  PubMed  Google Scholar 

  6. Chen JY, Ko TL, Wen YR, Wu SC, Chou YH, Yien HW, et al. Opioid-sparing effects of ketorolac and its correlation with the recovery of postoperative bowel function in colorectal surgery patients: a prospective randomized double-blinded study. Clin J Pain. 2009;25(6):485–9.

    Article  CAS  PubMed  Google Scholar 

  7. Marret E, Kurdi O, Zufferey P, Bonnet F. Effects of nonsteroidal antiinflammatory drugs on patient-controlled analgesia morphine side effects: meta-analysis of randomized controlled trials. Anesthesiology. 2005;102(6):1249–60.

    Article  CAS  PubMed  Google Scholar 

  8. Elia N, Lysakowski C, Tramer MR. Does multimodal analgesia with acetaminophen, nonsteroidal antiinflammatory drugs, or selective cyclooxygenase-2 inhibitors and patient-controlled analgesia morphine offer advantages over morphine alone? Meta-analyses of randomized trials. Anesthesiology. 2005;103(6):1296–304.

    Article  CAS  PubMed  Google Scholar 

  9. Eisenberg E, Berkey CS, Carr DB, Mosteller F, Chalmers TC. Efficacy and safety of nonsteroidal antiinflammatory drugs for cancer pain: a meta-analysis. J Clin Oncol. 1994;12:2756–65.

    CAS  PubMed  Google Scholar 

  10. Lötsch J, von Hentig N, Freynhagen R, Griessinger N, Zimmermann M, Doehring A, et al. Cross-sectional analysis of the influence of currently known pharmacogenetic modulators on opioid therapy in outpatient pain centers. Pharmacogenet Genomics. 2009;19(6):429–36.

    Article  PubMed  Google Scholar 

  11. Doehring A, Freynhagen R, Griessinger N, Zimmermann M, Sittl R, von Hentig N, et al. Cross-sectional assessment of consequences of a GTP cyclohydrolase 1 haplotype for specialized tertiary outpatient pain care. Clin J Pain. 2009;25(9):781–5.

    Google Scholar 

  12. Hinz B, Cheremina O, Brune K. Acetaminophen (paracetamol) is a selective cyclooxygenase-2 inhibitor in man. FASEB J. 2008;22(2):383–90.

    Article  CAS  PubMed  Google Scholar 

  13. Pierre SC, Schmidt R, Brenneis C, Michaelis M, Geisslinger G, Scholich K. Inhibition of cyclooxygenases by dipyrone. Br J Pharmacol. 2007;151(4):494–503.

    Article  CAS  PubMed  Google Scholar 

  14. Twycross R, Wilcock A. Palliative care formulary. 3rd ed. Oxford: Palliativebooks.com; 2007.

    Google Scholar 

  15. Lienert GA. Applied configural frequency analysis. A reader on typological research in psychology and medicine. Frankfurt am Main: Athenäum; 1988.

    Google Scholar 

  16. Serhan CN, Chiang N, Van Dyke TE. Resolving inflammation: dual anti-inflammatory and pro-resolution lipid mediators. Nat Rev Immunol. 2008;8(5):349–61.

    Article  CAS  PubMed  Google Scholar 

  17. Yacoubian S, Serhan CN. New endogenous anti-inflammatory and proresolving lipid mediators: implications for rheumatic diseases. Nat Clin Pract Rheumatol. 2007;3(10):570–9.

    Article  CAS  PubMed  Google Scholar 

  18. Choi SH, Aid S, Bosetti F. The distinct roles of cyclooxygenase-1 and -2 in neuroinflammation: implications for translational research. Trends Pharmacol Sci. 2009;30(4):174–81.

    Article  CAS  PubMed  Google Scholar 

  19. Brenneis C, Coste O, Angioni C, Schmidt H, Altenrath K, Schuh C-D, et al. Anti-inflammatory role of microsoaml prostaglandin synthase-1 in a model of neuroinflammation. J Biol Chem. 2010. (in revision).

  20. Scholich K, Geisslinger G. Is mPGES-1 a promising target for pain therapy? Trends Pharmacol Sci. 2006;27(8):399–401.

    Article  CAS  PubMed  Google Scholar 

  21. Blaho VA, Buczynski MW, Brown CR, Dennis EA. Lipidomic analysis of dynamic eicosanoid responses during the induction and resolution of lyme arthritis. J Biol Chem. 2009;284(32):21599–612.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

We thank Mark Sellen for native English language editing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jörn Lötsch.

Additional information

Responsible Editor: Michael Parnham.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lötsch, J., Freynhagen, R., von Hentig, N. et al. Higher pain scores, similar opioid doses and side effects associated with antipyretic analgesics in specialised tertiary pain care. Inflamm. Res. 59, 989–995 (2010). https://doi.org/10.1007/s00011-010-0215-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-010-0215-3

Keywords

Navigation