Skip to main content
Log in

Derivatives on Real Hypersurfaces of Two-Dimensional Non-flat Complex Space Forms

  • Published:
Mediterranean Journal of Mathematics Aims and scope Submit manuscript

Abstract

The aim of this paper is to answer the question if there are three-dimensional real hypersurfaces in non-flat complex space forms whose covariant derivative with respect to the kth generalized Tanaka–Webster connection of a tensor field of type (1, 1) coincides with the Lie derivative of it either in direction of any vector field orthogonal to \(\xi \) or in direction of \(\xi \). The answer is given, in case the tensor field is the shape operator of a real hypersurface or the structure Jacobi operator of it.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Berndt, J.: Real hypersurfaces with constant principal curvatures in complex hyperbolic space. J. Reine Angew. Math. 395, 132–141 (1989)

    MathSciNet  MATH  Google Scholar 

  2. Blair, D.E.: Riemannian geometry of contact and symplectic manifolds. In: Progress in Mathematics, vol. 203. Birkhauser, Boston (2002)

  3. Cho, J.T.: CR-structures on real hypersurfaces of a complex space form. Publ. Math. Debr. 54, 473–487 (1999)

    MathSciNet  MATH  Google Scholar 

  4. Ivey, T.A., Ryan, P.J.: The structure Jacobi operator for real hypersurfaces in \(\mathbb{C}P^{2}\) and \(\mathbb{C}H^{2}\). Results Math. 56, 473–488 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. Ivey, T.A., Ryan, P.J.: Hopf hypersurfaces of small Hopf principal curvature in \(\mathbb{C}H^{2}\). Geom. Dedic. 141, 147–161 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. Ki, U.-H., Suh, Y.J.: On real hypersurfaces of a complex space form. Math. J. Okayama Univ. 32, 207–221 (1990)

    MathSciNet  MATH  Google Scholar 

  7. Kimura, M.: Sectional curvatures of holomorphic planes of a real hypersurface in \(P^n(\mathbb{C})\). Math. Ann. 276, 487–497 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  8. Lohnherr, M., Reckziegel, H.: On ruled real hypersurfaces in complex space forms. Geom. Dedic. 74, 267–286 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  9. Maeda, Y.: On real hypersurfaces of a complex projective space. J. Math. Soc. Jpn. 28, 529–540 (1976)

    Article  MATH  Google Scholar 

  10. Montiel, S.: Real hypersurfaces of a complex hyperbolic space. J. Math. Soc. Jpn. 35, 515–535 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  11. Montiel, S., Romero, A.: On some real hypersurfaces of a complex hyperbolic space. Geom. Dedic. 20, 245–261 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  12. Niebergall, R., Ryan, P.J.: Real hypersurfaces in complex space forms: in tight and taut submanifolds. MSRI Publ. 32, 233–305 (1997)

    MATH  Google Scholar 

  13. Okumura, M.: On some real hypersurfaces of a complex projective space. Trans. Am. Math. Soc. 212, 355–364 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  14. Panagiotidou, K.: The structure Jacobi and the shape operator of real hypersurfaces in \(\mathbb{C}P^{2}\) and \(\mathbb{C}H^{2}\). Beitr. Algebra Geom. 55, 1991–1998 (2013)

    MathSciNet  Google Scholar 

  15. Panagiotidou, K., Pérez, J.D.: Commuting conditions of the \(k\)-th Cho operator with the structure Jacobi operator of real hypersurfaces in complex space forms. Open Math. 13, 321–332 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  16. Panagiotidou, K., Pérez, J.D.: Commutativity of the \(k\)-th Cho operator with the shape operator of real hypersurfaces in complex space forms (work in progress)

  17. Panagiotidou, K., Xenos, Ph.J.: Real hypersurfaces in \(\mathbb{C}P^{2}\) and \(\mathbb{C}H^{2}\) equipped with structure Jacobi operator \({\cal{L}}_\xi l=\nabla _{\xi }l\). Adv. Pure Math. 2, 1–5 (2012)

  18. Panagiotidou, K., Xenos, PhJ: Real hypersurfaces in \(\mathbb{C}P^{2}\) and \(\mathbb{C}H^{2}\) whose structure Jacobi operator is Lie \(\mathbb{D}\)-parallel. Note Math. 32, 89–99 (2012)

    MathSciNet  MATH  Google Scholar 

  19. Pérez, J.D.: Commutativity of Cho and structure Jacobi operators of a real hypersurface in a complex projective space. Ann. Math. 194, 1781–1794 (2015)

    MathSciNet  MATH  Google Scholar 

  20. Pérez, J.D.: Comparing Lie derivatives on real hypersurfaces in complex projective space. Mediter. J. Math. (2015). doi:10.1007/s00009-015-0601-8

  21. Pérez, J.D., Santos, F.G.: Real hypersurfaces in complex projective space whose structure Jacobi operator satisfies \(\mathfrak{L}_\xi R_{\xi }=\nabla _{\xi }R_{\xi }\). Rocky Mt. J. Math. 39, 1293–1301 (2009)

    Article  Google Scholar 

  22. Pérez, J.D., Suh, Y.J.: Generalized Tanaka–Webster and covariant derivatives on a real hypersurface in a complex projective space. Monatsh. Math. 177, 637–647 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  23. Takagi, R.: Real hypersurfaces in complex projective space with constant principal curvatures. J. Math. Soc. Jpn. 27, 43–53 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  24. Takagi, R.: On homogeneous real hypersurfaces in a complex projective space. Osaka J. Math. 10, 495–506 (1973)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George Kaimakamis.

Additional information

J. de Dios Pérez is partially supported by MINECO-FEDER Grant MTM2013-47828-C2-1-P.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaimakamis, G., Panagiotidou, K. & de Dios Pérez, J. Derivatives on Real Hypersurfaces of Two-Dimensional Non-flat Complex Space Forms. Mediterr. J. Math. 14, 74 (2017). https://doi.org/10.1007/s00009-017-0850-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00009-017-0850-9

Mathematics Subject Classification

Keywords

Navigation